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Let A ∈ Rn×n be a large, sparse, nonsymmetric
matrix.
B ∈ Rn×n, Symmetric Positive Definite (SPD)
matrix.
We consider the problem of computing the
eigenpair (z,λ) from the Generalised
Eigenvalue Problem

Az = λBz, z ∈ Cn, z 6= 0, (1)

where λ ∈ C is the eigenvalue.
We assume that the eigenpair of interest (z,λ)
is algebraically simple. The left e-vector ψ is 3



ψHBz 6= 0. (2)

By adding the normalisation

zHBz = 1, (3)

to (1) & v = [zT ,λ],

F(v) =
[

(A− λB)z
−1

2zHBz + 1
2

]
= 0. (4)



Lemma

z̄ in zHBz = z̄T Bz is not differentiable.

Proof.

If z = x + iy , z̄ = x − iy , then the Cauchy-Riemann
equations are not satisfied. u(x , y) = x ,
v(x , y) = −y , then ux (x , y) = 1 and vy (x , y) = −1,
whereas the Cauchy-Riemann equations require
that ux (x , y) = vy (x , y).

Newton’s method cannot be applied to (4).



For a real eigenpair (z,λ), Newton’s method for
solving (4) involves the solution of the (n + 1)
square linear systems[

A− λ(k)B −Bz(k)

−(Bz(k))T 0

] [
∆z(k)

∆λ(k)

]
=

[
−(A− λ(k)B)z(k)

1
2z(k)

T
Bz(k) − 1

2

]
,

(5)
for real unknowns ∆v(k) = [∆z(k)

T
,∆λ(k)].

Update v(k+1) = v(k) + ∆v(k),for k = 0,1,2, · · · .



Ruhe (1973) added the normalization cHz = 1,
c is a fixed complex vector instead of zHBz = 1.
Parlett and Saad (1987) studied inverse
iteration with a fixed complex shift. Numerical
examples showed linear convergence to the
eigenvalue closest to the shift.
Tisseur (2001) used the normalization eT

s z = 1
Both Ruhe’s and Tisseur’s normalizations are
differentiable, but we use the natural
normalization for the eigenvector.



z = z1 + iz2 and λ = α + iβ. (1), (4) becomes

F(v) =

 (A− αB)z1 + βBz2
−βBz1 + (A− αB)z2
−1

2(z
T
1 Bz1 + zT

2 Bz2) +
1
2

 = 0. (6)

The Jacobian, with v = [z1, z2, α, β]T is

Fv(v) =

 (A− αB) βB −Bz1 Bz2
−βB (A− αB) −Bz2 −Bz1
−(Bz1)

T −(Bz2)
T 0 0

 .

(7)



Let

w =

[
z1
z2

]
, w1 =

[
z2
−z1

]
. (8)

We define the real 2n by 2n matrix M as

M =

[
(A− αB) βB
−βB (A− αB)

]
. (9)

Also, we form the 2n by 2 real matrix

N =

[
−Bz1 Bz2
−Bz2 −Bz1

]
=
[
−B2w B2w1

]
, (10)

where B2 =

[
B O
O B

]
.



Note that because at the root,[
(A− αB) βB
−βB (A− αB)

] [
z1
z2

]
=

[
(A− αB)z1 + βBz2
(A− αB)z2 − βBz1

]
= 0.

In the same vein, we find[
(A− αB) βB
−βB (A− αB)

] [
z2
−z1

]
= 0.

The Jacobian (7) can be rewritten in partitioned
form

Fv =

[
M −B2w B2w1

−(B2w)T 0 0

]
=

[
M N

−(B2w)T 0T

]
.

(11)



For all ψ ∈ N(A− λB)H\{0}, we define
ψ = ψ1 + iψ2, where ψ1,ψ2 ∈ Rn,

ψH(A− λB) = (ψT
1 − iψT

2 )[(A− αB)− iβB]

= ψT
1 (A− αB)− βψT

2 B

− i [βψT
1 B + ψT

2 (A− αB)] = 0T .

[ψT
1 ψT

2 ]M = [ψT
1 ψT

2 ]

[
(A− αB) βB
−βB (A− αB)

]
= 0T

[ψT
1 , ψT

2 ] is a left nullvector of M. Similarly,

[ψT
2 −ψT

1 ]M = [ψT
2 −ψT

1 ]

[
(A− αB) βB
−βB (A− αB)

]
= 0T .



C =

[
ψ1 ψ2
ψ2 −ψ1

]
. (12)

Now, observe that the condition (2), implies

ψHBz = [ψT
1 Bz1 +ψT

2 Bz2]+ i [ψT
1 Bz2−ψT

2 Bz1] 6= 0.

Theorem

Assume that the eigenpair (z,λ) of the pencil (A,B)
is algebraically simple. If z1 and z2 are nonzero
vectors, then φ = {τ[zT

2 ,−zT
1 ,0,0], τ ∈ R} is the

eigenspace corresponding to the zero eigenvalue of
Fv(v) at the root.



Proof

Post-multiply Fv(v) by the unknown nonzero vector
φ = [p′,q′]T and H = CT N[

M N
−(B2w)T 0T

] [
p′

q′

]
= 0.

Mp′ + Nq′ = 0 (13)

wT B2p′ = 0. (14)

H =

[
ψT

1 ψT
2

ψT
2 −ψT

1

] [
−Bz1 Bz2
−Bz2 −Bz1

]
=

[
−(ψT

1 Bz1 + ψT
2 Bz2) ψT

1 Bz2 −ψT
2 Bz1

ψT
1 Bz2 −ψT

2 Bz1 (ψT
1 Bz1 + ψT

2 Bz2)

]
.



CT Mp′ + CT Nq′ = 0. (15)

But, CT M = 0T . Consequently, CT Nq′ = 0, or

Hq′ = CT Nq′

=

[
−(ψT

1 Bz1 + ψT
2 Bz2) ψT

1 Bz2 −ψT
2 Bz1

ψT
1 Bz2 −ψT

2 Bz1 (ψT
1 Bz1 + ψT

2 Bz2)

]
q′

= 0.

Now, det H 6= 0. H is nonsingular. Thus, q′ = 0.
Equation (13) now becomes Mp′ = 0, meaning that
p′ ∈ N(M), p′ = µw + τw1. From (14),

0 = wT B2p′ = µwT B2w + τwT B2w1.

wT B2w1 = 0 and wT B2w 6= 0, µ = 0 and so
p′ = τw1. Hence, for all



τ ∈ R\{0}, p′ = [τz2,−τz1]
T ∈ N(M) also satisfies

equation (14). φ = τ[z2,−z1,0,0]T as the only
nonzero nullvector of Fv(v).

Corollary

If the eigenpair (z,λ) of (A,B) is algebraically
simple, then the Jacobian Fv(v) in (11) is of full rank
at the root.

Proof.

The theorem above guarantees the existence of a
single nonzero nullvector of Fv(v) at the root, then
rank

(
Fv(v)

)
= 2n + 1. Therefore, the Jacobian (7)

is of full rank at the root. (Dimension theorem).



Eigenpair Computation using Gauss-Newton’s
method

A,B, v(0) = [z(0)1 , z(0)2 , α(0), β(0)]T , kmax and tol.
for k = 0,1,2, . . . , until convergence

Find the reduced QR factorisation of
Fv(v(k))T = QR.
Solve RT g(k) = −F(v(k)) for g(k) in (7).
Compute ∆v(k) = Qg(k) for ∆v(k) using (6).
Update v(k+1) = v(k) + ∆v(k).
v(kmax).

The stopping condition for the algorithm above is

‖∆v(k)‖ ≤ tol .



Consider the 200 by 200 matrix A bwm200.mtx
from the matrix market library. It is the discretised
Jacobian of the Brusselator wave model for a
chemical reaction. The resulting eigenvalue problem
with B = I was also studied in Parlett & Saad and
we are interested in finding the rightmost eigenvalue
of A which is closest to the imaginary axis and its
corresponding eigenvector.



α(0) = 0.0, β(0) = 2.5 in line with Parlett & Saad and
took z(0)1 = 1

2‖1‖ and z(0)2 = 1
√

3
2‖1‖ , where 1 is the

vector of all ones.



k α(k) β(k) ‖w(k+1) ‖λ(k+1) ‖∆v(k)‖ ‖F(v(k))‖
−w(k)‖ −λ(k)‖

0 0.00 2.50 3.8e+00 7.8e-01 3.9e+00 3.6e+01
1 2.34e-1 1.75 1.8e+00 2.2e-01 1.8e+00 7.8e+00
2 1.18e-1 1.94 8.1e-01 1.4e-01 8.2e-01 1.7e+00
3 4.47e-2 2.06 2.5e-01 7.0e-02 2.6e-01 3.4e-01
4 8.82e-3 2.12 3.1e-02 1.7e-02 3.5e-02 3.7e-02
5 2.48e-4 2.13 4.8e-04 5.2e-04 7.1e-04 7.1e-04
6 1.80e-5 2.13 1.2e-07 2.5e-07 2.8e-07 2.8e-07
7 1.81e-5 2.13 2.1e-14 2.9e-14 3.6e-14 6.0e-14



Newton’s method in complex arithmetic

A,v(0) = [z(0)1 , z(0)2 , α(0), β(0)]T , kmax& tol.
For k = 0,1,2, . . . , until convergence
Compute the LU factorisation of[

A− λ(k)I −z(k)

−(z(k))H 0

]
.

d(k) = −
[
(A− λ(k)I)z(k)

−1
2z(k)

H
z(k) + 1

2

]
.

Solve Ly(k) = d(k) for y(k).
Solve U∆v(k) = y(k) for ∆v(k).
Update v(k+1) = v(k) + ∆v(k).



Newton’s method in Complex Arithmetic

k α(k) + iβ(k) ‖z(k+1) |λ(k+1) ‖∆v(k)‖ ‖F(v(k))‖
−z(k)‖ −λ(k)|

0 0.00+2.50i 3.8e+00 7.8e-01 3.9e+00 3.6e+01
1 2.34e-1+1.75i 1.8e+00 2.2e-01 1.8e+00 7.8e+00
2 1.18e-1+1.94i 8.1e-01 1.4e-01 8.2e-01 1.7e+00
3 4.47e-2+2.06i 2.5e-01 7.0e-02 2.6e-01 3.4e-01
4 8.82e-3+2.12i 3.1e-02 1.7e-02 3.5e-02 3.7e-02
5 2.48e-4+2.13i 4.8e-04 5.2e-04 7.1e-04 7.1e-04
6 1.80e-5+2.13i 1.2e-07 2.5e-07 2.8e-07 2.8e-07
7 1.81e-5+2.13i 1.1e-14 3.7e-14 3.8e-14 6.3e-14



Quadratic convergence.
No need to worry about the choice of c.
Strange: If we neglect differentiability, we still
obtained quadratic convergence for B = I.
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