Numerical computation of the Complex Eigenpair of a Large Sparse Matrix

R. O. Akinola and A. Spence

23rd March 2016

- Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a large, sparse, nonsymmetric matrix.
- **B** ∈ ℝ^{*n*×*n*}, Symmetric Positive Definite (SPD) matrix.
- We consider the problem of computing the eigenpair (z, λ) from the Generalised Eigenvalue Problem

$$Az = \lambda Bz$$
, $z \in \mathbb{C}^n$, $z \neq 0$, (1)

where $\lambda \in \mathbb{C}$ is the eigenvalue.

We assume that the eigenpair of interest (z, λ) is algebraically simple. The left e-vector ψ is ∋

$$\boldsymbol{\psi}^{H} \mathbf{B} \mathbf{z} \neq \mathbf{0}.$$
 (2)

By adding the normalisation

$$\mathbf{z}^{H}\mathbf{B}\mathbf{z}=\mathbf{1},$$
 (3)

to (1) & $\mathbf{v} = [\mathbf{z}^T, \lambda]$,

$$\mathbf{F}(\mathbf{v}) = \begin{bmatrix} (\mathbf{A} - \lambda \mathbf{B})\mathbf{z} \\ -\frac{1}{2}\mathbf{z}^{H}\mathbf{B}\mathbf{z} + \frac{1}{2} \end{bmatrix} = \mathbf{0}.$$
 (4)

Lemma

$\bar{\mathbf{z}}$ in $\mathbf{z}^H \mathbf{B} \mathbf{z} = \bar{\mathbf{z}}^T \mathbf{B} \mathbf{z}$ is not differentiable.

Proof.

If z = x + iy, $\bar{z} = x - iy$, then the Cauchy-Riemann equations are not satisfied. u(x, y) = x, v(x, y) = -y, then $u_x(x, y) = 1$ and $v_y(x, y) = -1$, whereas the Cauchy-Riemann equations require that $u_x(x, y) = v_y(x, y)$.

Newton's method cannot be applied to (4).

For a real eigenpair (z, λ), Newton's method for solving (4) involves the solution of the (n+1) square linear systems

$$\begin{bmatrix} \mathbf{A} - \lambda^{(k)} \mathbf{B} & -\mathbf{B} \mathbf{z}^{(k)} \\ -(\mathbf{B} \mathbf{z}^{(k)})^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{z}^{(k)} \\ \Delta \lambda^{(k)} \end{bmatrix} = \begin{bmatrix} -(\mathbf{A} - \lambda^{(k)} \mathbf{B}) \mathbf{z}^{(k)} \\ \frac{1}{2} \mathbf{z}^{(k)}^T \mathbf{B} \mathbf{z}^{(k)} - \frac{1}{2} \end{bmatrix}$$
(5)
for real unknowns $\Delta \mathbf{v}^{(k)} = [\Delta \mathbf{z}^{(k)}^T, \Delta \lambda^{(k)}].$
Update $\mathbf{v}^{(k+1)} = \mathbf{v}^{(k)} + \Delta \mathbf{v}^{(k)}$, for $k = 0, 1, 2, \cdots$.

- Ruhe (1973) added the normalization c^Hz = 1,
 c is a fixed complex vector instead of z^HBz = 1.
- Parlett and Saad (1987) studied inverse iteration with a fixed complex shift. Numerical examples showed linear convergence to the eigenvalue closest to the shift.
- Tisseur (2001) used the normalization $\mathbf{e}_s^T \mathbf{z} = 1$
- Both Ruhe's and Tisseur's normalizations are differentiable, but we use the natural normalization for the eigenvector.

$$\mathbf{z} = \mathbf{z}_{1} + i\mathbf{z}_{2} \text{ and } \lambda = \alpha + i\beta. (1), (4) \text{ becomes}$$

$$\mathbf{F}(\mathbf{v}) = \begin{bmatrix} (\mathbf{A} - \alpha \mathbf{B})\mathbf{z}_{1} + \beta \mathbf{B}\mathbf{z}_{2} \\ -\beta \mathbf{B}\mathbf{z}_{1} + (\mathbf{A} - \alpha \mathbf{B})\mathbf{z}_{2} \\ -\frac{1}{2}(\mathbf{z}_{1}^{T}\mathbf{B}\mathbf{z}_{1} + \mathbf{z}_{2}^{T}\mathbf{B}\mathbf{z}_{2}) + \frac{1}{2} \end{bmatrix} = \mathbf{0}. \quad (6)$$

The Jacobian, with $\mathbf{v} = [\mathbf{z}_1, \mathbf{z}_2, \alpha, \beta]^T$ is

$$\mathbf{F}_{\mathbf{v}}(\mathbf{v}) = \begin{bmatrix} (\mathbf{A} - \alpha \mathbf{B}) & \beta \mathbf{B} & -\mathbf{B}\mathbf{z}_1 & \mathbf{B}\mathbf{z}_2 \\ -\beta \mathbf{B} & (\mathbf{A} - \alpha \mathbf{B}) & -\mathbf{B}\mathbf{z}_2 & -\mathbf{B}\mathbf{z}_1 \\ -(\mathbf{B}\mathbf{z}_1)^T & -(\mathbf{B}\mathbf{z}_2)^T & \mathbf{0} & \mathbf{0} \end{bmatrix}.$$
(7)

Let

$$\mathbf{w} = \begin{bmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{bmatrix}, \qquad \mathbf{w}_1 = \begin{bmatrix} \mathbf{z}_2 \\ -\mathbf{z}_1 \end{bmatrix}. \tag{8}$$

We define the real 2n by 2n matrix **M** as

$$\mathbf{M} = \begin{bmatrix} (\mathbf{A} - \alpha \mathbf{B}) & \beta \mathbf{B} \\ -\beta \mathbf{B} & (\mathbf{A} - \alpha \mathbf{B}) \end{bmatrix}.$$
 (9)

Also, we form the 2*n* by 2 real matrix

$$\mathbf{N} = \begin{bmatrix} -\mathbf{B}\mathbf{z}_1 & \mathbf{B}\mathbf{z}_2 \\ -\mathbf{B}\mathbf{z}_2 & -\mathbf{B}\mathbf{z}_1 \end{bmatrix} = \begin{bmatrix} -\mathbf{B}_2\mathbf{w} & \mathbf{B}_2\mathbf{w}_1 \end{bmatrix}, \quad (10)$$

where $\mathbf{B}_2 = \begin{bmatrix} \mathbf{B} & \mathbf{O} \\ \mathbf{O} & \mathbf{B} \end{bmatrix}.$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Note that because at the root,

$$\begin{bmatrix} (\mathbf{A} - \alpha \mathbf{B}) & \beta \mathbf{B} \\ -\beta \mathbf{B} & (\mathbf{A} - \alpha \mathbf{B}) \end{bmatrix} \begin{bmatrix} \mathbf{z}_1 \\ \mathbf{z}_2 \end{bmatrix} = \begin{bmatrix} (\mathbf{A} - \alpha \mathbf{B})\mathbf{z}_1 + \beta \mathbf{B}\mathbf{z}_2 \\ (\mathbf{A} - \alpha \mathbf{B})\mathbf{z}_2 - \beta \mathbf{B}\mathbf{z}_1 \end{bmatrix} = \mathbf{0}.$$

In the same vein, we find

$$\begin{bmatrix} (\mathbf{A} - \alpha \mathbf{B}) & \beta \mathbf{B} \\ -\beta \mathbf{B} & (\mathbf{A} - \alpha \mathbf{B}) \end{bmatrix} \begin{bmatrix} \mathbf{z}_2 \\ -\mathbf{z}_1 \end{bmatrix} = \mathbf{0}.$$

The Jacobian (7) can be rewritten in partitioned form

$$\mathbf{F}_{\mathbf{v}} = \begin{bmatrix} \mathbf{M} & -\mathbf{B}_{2}\mathbf{w} & \mathbf{B}_{2}\mathbf{w}_{1} \\ -(\mathbf{B}_{2}\mathbf{w})^{T} & \mathbf{0} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{M} & \mathbf{N} \\ -(\mathbf{B}_{2}\mathbf{w})^{T} & \mathbf{0}^{T} \end{bmatrix}$$
(11)

For all
$$\boldsymbol{\psi} \in \mathcal{N}(\mathbf{A} - \lambda \mathbf{B})^{H} \setminus \{\mathbf{0}\}$$
, we define
 $\boldsymbol{\psi} = \boldsymbol{\psi}_{1} + i\boldsymbol{\psi}_{2}$, where $\boldsymbol{\psi}_{1}, \boldsymbol{\psi}_{2} \in \mathbb{R}^{n}$,
 $\boldsymbol{\psi}^{H}(\mathbf{A} - \lambda \mathbf{B}) = (\boldsymbol{\psi}_{1}^{T} - i\boldsymbol{\psi}_{2}^{T})[(\mathbf{A} - \alpha \mathbf{B}) - i\beta \mathbf{B}]$
 $= \boldsymbol{\psi}_{1}^{T}(\mathbf{A} - \alpha \mathbf{B}) - \beta \boldsymbol{\psi}_{2}^{T} \mathbf{B}$
 $- i[\beta \boldsymbol{\psi}_{1}^{T} \mathbf{B} + \boldsymbol{\psi}_{2}^{T}(\mathbf{A} - \alpha \mathbf{B})] = \mathbf{0}^{T}$.
 $[\boldsymbol{\psi}_{1}^{T} \quad \boldsymbol{\psi}_{2}^{T}]\mathbf{M} = [\boldsymbol{\psi}_{1}^{T} \quad \boldsymbol{\psi}_{2}^{T}]\begin{bmatrix}(\mathbf{A} - \alpha \mathbf{B}) & \beta \mathbf{B} \\ -\beta \mathbf{B} & (\mathbf{A} - \alpha \mathbf{B})\end{bmatrix} = \mathbf{0}^{T}$
 $[\boldsymbol{\psi}_{1}^{T}, \quad \boldsymbol{\psi}_{2}^{T}]$ is a left nullvector of \mathbf{M} . Similarly,
 $[\boldsymbol{\psi}_{2}^{T} \quad -\boldsymbol{\psi}_{1}^{T}]\mathbf{M} = [\boldsymbol{\psi}_{2}^{T} \quad -\boldsymbol{\psi}_{1}^{T}]\begin{bmatrix}(\mathbf{A} - \alpha \mathbf{B}) & \beta \mathbf{B} \\ -\beta \mathbf{B} & (\mathbf{A} - \alpha \mathbf{B})\end{bmatrix} = \mathbf{0}^{T}$

うくで

$$\mathbf{C} = \begin{bmatrix} \boldsymbol{\psi}_1 & \boldsymbol{\psi}_2 \\ \boldsymbol{\psi}_2 & -\boldsymbol{\psi}_1 \end{bmatrix}.$$
(12)

Now, observe that the condition (2), implies

$$\boldsymbol{\psi}^{H}\mathbf{B}\mathbf{z} = [\boldsymbol{\psi}_{1}^{T}\mathbf{B}\mathbf{z}_{1} + \boldsymbol{\psi}_{2}^{T}\mathbf{B}\mathbf{z}_{2}] + i[\boldsymbol{\psi}_{1}^{T}\mathbf{B}\mathbf{z}_{2} - \boldsymbol{\psi}_{2}^{T}\mathbf{B}\mathbf{z}_{1}] \neq 0.$$

Theorem

Assume that the eigenpair (\mathbf{z}, λ) of the pencil (\mathbf{A}, \mathbf{B}) is algebraically simple. If \mathbf{z}_1 and \mathbf{z}_2 are nonzero vectors, then $\boldsymbol{\phi} = \{\tau[\mathbf{z}_2^T, -\mathbf{z}_1^T, 0, 0], \tau \in \mathbb{R}\}$ is the eigenspace corresponding to the zero eigenvalue of $\mathbf{F}_{\mathbf{v}}(\mathbf{v})$ at the root.

Proof

Post-multiply $\mathbf{F}_{\mathbf{v}}(\mathbf{v})$ by the unknown nonzero vector $\boldsymbol{\phi} = [\mathbf{p}', \mathbf{q}']^T$ and $\mathbf{H} = \mathbf{C}^T \mathbf{N}$

$$\begin{bmatrix} \mathbf{M} & \mathbf{N} \\ -(\mathbf{B}_2 \mathbf{w})^T & \mathbf{0}^T \end{bmatrix} \begin{bmatrix} \mathbf{p}' \\ \mathbf{q}' \end{bmatrix} = \mathbf{0}$$

$$\mathbf{M}\mathbf{p}' + \mathbf{N}\mathbf{q}' = \mathbf{0} \tag{13}$$

$$w' B_2 p' = 0.$$
 (14)

$$\begin{split} \mathbf{H} &= \begin{bmatrix} \boldsymbol{\psi}_1^T & \boldsymbol{\psi}_2^T \\ \boldsymbol{\psi}_2^T & -\boldsymbol{\psi}_1^T \end{bmatrix} \begin{bmatrix} -\mathbf{B}\mathbf{z}_1 & \mathbf{B}\mathbf{z}_2 \\ -\mathbf{B}\mathbf{z}_2 & -\mathbf{B}\mathbf{z}_1 \end{bmatrix} \\ &= \begin{bmatrix} -(\boldsymbol{\psi}_1^T\mathbf{B}\mathbf{z}_1 + \boldsymbol{\psi}_2^T\mathbf{B}\mathbf{z}_2) & \boldsymbol{\psi}_1^T\mathbf{B}\mathbf{z}_2 - \boldsymbol{\psi}_2^T\mathbf{B}\mathbf{z}_1 \\ \boldsymbol{\psi}_1^T\mathbf{B}\mathbf{z}_2 - \boldsymbol{\psi}_2^T\mathbf{B}\mathbf{z}_1 & (\boldsymbol{\psi}_1^T\mathbf{B}\mathbf{z}_1 + \boldsymbol{\psi}_2^T\mathbf{B}\mathbf{z}_2) \end{bmatrix} \end{split}$$

$$\mathbf{C}^{\mathsf{T}}\mathbf{M}\mathbf{p}' + \mathbf{C}^{\mathsf{T}}\mathbf{N}\mathbf{q}' = \mathbf{0}.$$
 (15)

But, $\mathbf{C}^T \mathbf{M} = \mathbf{0}^T$. Consequently, $\mathbf{C}^T \mathbf{N} \mathbf{q}' = \mathbf{0}$, or

$$\begin{aligned} \mathbf{H}\mathbf{q}' &= \mathbf{C}^{T}\mathbf{N}\mathbf{q}' \\ &= \begin{bmatrix} -(\boldsymbol{\psi}_{1}^{T}\mathbf{B}\mathbf{z}_{1} + \boldsymbol{\psi}_{2}^{T}\mathbf{B}\mathbf{z}_{2}) & \boldsymbol{\psi}_{1}^{T}\mathbf{B}\mathbf{z}_{2} - \boldsymbol{\psi}_{2}^{T}\mathbf{B}\mathbf{z}_{1} \\ \boldsymbol{\psi}_{1}^{T}\mathbf{B}\mathbf{z}_{2} - \boldsymbol{\psi}_{2}^{T}\mathbf{B}\mathbf{z}_{1} & (\boldsymbol{\psi}_{1}^{T}\mathbf{B}\mathbf{z}_{1} + \boldsymbol{\psi}_{2}^{T}\mathbf{B}\mathbf{z}_{2}) \end{bmatrix} \mathbf{q}' \\ &= \mathbf{0}. \end{aligned}$$

Now, det $\mathbf{H} \neq 0$. **H** is nonsingular. Thus, $\mathbf{q}' = \mathbf{0}$. Equation (13) now becomes $\mathbf{Mp}' = \mathbf{0}$, meaning that $\mathbf{p}' \in \mathcal{N}(\mathbf{M})$, $\mathbf{p}' = \mu \mathbf{w} + \tau \mathbf{w}_1$. From (14),

$$\mathbf{0} = \mathbf{w}^T \mathbf{B}_2 \mathbf{p}' = \mu \mathbf{w}^T \mathbf{B}_2 \mathbf{w} + \tau \mathbf{w}^T \mathbf{B}_2 \mathbf{w}_1.$$

 $\mathbf{w}^T \mathbf{B}_2 \mathbf{w}_1 = 0$ and $\mathbf{w}^T \mathbf{B}_2 \mathbf{w} \neq 0$, $\mu = 0$ and so $\mathbf{p}' = \tau \mathbf{w}_1$. Hence, for all

 $\tau \in \mathbb{R} \setminus \{0\}, \ \mathbf{p}' = [\tau \mathbf{z}_2, -\tau \mathbf{z}_1]^T \in \mathcal{N}(\mathbf{M})$ also satisfies equation (14). $\boldsymbol{\phi} = \tau [\mathbf{z}_2, -\mathbf{z}_1, 0, 0]^T$ as the only nonzero nullvector of $\mathbf{F}_{\mathbf{v}}(\mathbf{v})$.

Corollary

If the eigenpair (z, λ) of (A, B) is algebraically simple, then the Jacobian $F_v(v)$ in (11) is of full rank at the root.

Proof.

The theorem above guarantees the existence of a single nonzero nullvector of $\mathbf{F}_{\mathbf{v}}(\mathbf{v})$ at the root, then rank $(\mathbf{F}_{\mathbf{v}}(\mathbf{v})) = 2n + 1$. Therefore, the Jacobian (7) is of full rank at the root. (Dimension theorem).

Eigenpair Computation using Gauss-Newton's method

The stopping condition for the algorithm above is

 $\|\Delta \mathbf{v}^{(k)}\| \leq tol.$

Consider the 200 by 200 matrix $\mathbf{A} \text{ bwm200.mtx}$ from the matrix market library. It is the discretised Jacobian of the Brusselator wave model for a chemical reaction. The resulting eigenvalue problem with $\mathbf{B} = \mathbf{I}$ was also studied in Parlett & Saad and we are interested in finding the rightmost eigenvalue of \mathbf{A} which is closest to the imaginary axis and its corresponding eigenvector.

$$\alpha^{(0)} = 0.0, \beta^{(0)} = 2.5$$
 in line with Parlett & Saad and took $\mathbf{z}_1^{(0)} = \frac{1}{2\|\mathbf{1}\|}$ and $\mathbf{z}_2^{(0)} = \frac{1\sqrt{3}}{2\|\mathbf{1}\|}$, where **1** is the vector of all ones.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ●

k	a ^(k)	$\beta^{(k)}$	$\ \mathbf{w}^{(k+1)} \ $	$\ \lambda^{(k+1)}\ $	$\ \Delta \mathbf{v}^{(k)}\ $	$\ \mathbf{F}(\mathbf{v}^{(k)})\ $
			$-\mathbf{w}^{(k)}\ $	$-\lambda^{(k)}\ $		
0	0.00	2.50	3.8e+00	7.8e-01	3.9e+00	3.6e+01
1	2.34e-1	1.75	1.8e+00	2.2e-01	1.8e+00	7.8e+00
2	1.18e-1	1.94	8.1e-01	1.4e-01	8.2e-01	1.7e+00
3	4.47e-2	2.06	2.5e-01	7.0e-02	2.6e-01	3.4e-01
4	8.82e-3	2.12	3.1e-02	1.7e-02	3.5e-02	3.7e-02
5	2.48e-4	2.13	4.8e-04	5.2e-04	7.1e-04	7.1e-04
6	1.80e-5	2.13	1.2e-07	2.5e-07	2.8e-07	2.8e-07
7	1.81e-5	2.13	2.1e-14	2.9e-14	3.6e-14	6.0e-14

Newton's method in complex arithmetic

A,
$$\mathbf{v}^{(0)} = [\mathbf{z}_1^{(0)}, \mathbf{z}_2^{(0)}, \alpha^{(0)}, \beta^{(0)}]^T$$
, k_{\max} & tol.

- For $k = 0, 1, 2, \ldots$, until convergence
- Compute the LU factorisation of

$$\begin{bmatrix} \mathbf{A} - \lambda^{(k)} \mathbf{I} & -\mathbf{z}^{(k)} \\ -(\mathbf{z}^{(k)})^H & \mathbf{0} \end{bmatrix}$$

$$\mathbf{d}^{(k)} = -\begin{bmatrix} (\mathbf{A} - \lambda^{(k)} \mathbf{I}) \mathbf{z}^{(k)} \\ -\frac{1}{2} \mathbf{z}^{(k)}^{H} \mathbf{z}^{(k)} + \frac{1}{2} \end{bmatrix}$$

- Solve $L\mathbf{y}^{(k)} = \mathbf{d}^{(k)}$ for $\mathbf{y}^{(k)}$. Solve $U\Delta\mathbf{v}^{(k)} = \mathbf{y}^{(k)}$ for $\Delta\mathbf{v}^{(k)}$.
- Update $\mathbf{v}^{(k+1)} = \mathbf{v}^{(k)} + \Delta \mathbf{v}^{(k)}$.

Newton's method in Complex Arithmetic

k	$\alpha^{(k)} + i\beta^{(k)}$	$\ \mathbf{z}^{(k+1)}\ $	$ \lambda^{(k+1)} $	$\ \Delta \mathbf{v}^{(k)}\ $	$\ \mathbf{F}(\mathbf{v}^{(k)})\ $
		$-\mathbf{z}^{(k)}\ $	$-\lambda^{(k)} $		
0	0.00+2.50i	3.8e+00	7.8e-01	3.9e+00	3.6e+01
1	2.34e-1+1.75i	1.8e+00	2.2e-01	1.8e+00	7.8e+00
2	1.18e-1+1.94i	8.1e-01	1.4e-01	8.2e-01	1.7e+00
3	4.47e-2+2.06i	2.5e-01	7.0e-02	2.6e-01	3.4e-01
4	8.82e-3+2.12i	3.1e-02	1.7e-02	3.5e-02	3.7e-02
5	2.48e-4+2.13i	4.8e-04	5.2e-04	7.1e-04	7.1e-04
6	1.80e-5+2.13i	1.2e-07	2.5e-07	2.8e-07	2.8e-07
7	1.81e-5+2.13i	1.1e-14	3.7e-14	3.8e-14	6.3e-14

- Quadratic convergence.
- No need to worry about the choice of **c**.
- Strange: If we neglect differentiability, we still obtained quadratic convergence for B = I.

Acknowledgements

- Everyone present
- University of Bath for Funding during my Ph. D.

э

G. W. Stewart.

Matrix Algorithms, volume II: Eigensystems. SIAM, 2001.

E. Kreyszig.

Advanced Engineering Mathematics. John Wiley & Sons, Inc., New York, eighth edition, 1999.

A. Ruhe.

Algorithms for the Nonlinear Eigenvalue Problem.

SIAM J. Matrix Anal. Appl., 10(4):674–689, 1973.

B. N. Parlett and Y. Saad. Complex Shift and Invert Strategies for Real Matrices.

K. Meerbergen, and D. Roose.

Matrix Transformations for Computing Rightmost Eigenvalues of Large Sparse Non-Symmetric Eigenvalue Problems.

IMA Journal of Numerical Analysis, 16:297–346, 1996.

F. Tisseur.

Newton's Method in Floating Point Arithmetic and Iterative Refinement of Generalized Eigenvalue Problems.

SIAM J. Matrix Anal. Appl., 22:1038–1057, 2001.

P. Deuflhard.

Newton Methods for Nonlinear Problems, chapter 4, pages 174–175. Springer, 2004.

B. Boisvert, R. Pozo, K. Remington, B. Miller, and R. Lipman. Matrix Market.