Linear Transformation-based Methods for Non-convex MIQPs

Eric Newby and Montaz Ali

School of Computer Science and Applied Mathematics, & Transnet Center of System Engineering, University of the Witwatersrand, South Africa

SANUM2016, University of Stellenbosch, March 22-24, 2016

1 The Non-convex MIQP and the Linear Transformation

Preprocessing before Convexification of Non-convex MIQP

Convex Reformulation of Non-convex MIQP
 Convexification by Semidefinite Programming (Billionnet et al (2012))
 Convexification of Bilinear Integer Terms (Porn et al (1999))

4 Method when Continuous part of the Hessian is Singular

5 Numerical Comparison of the original and the Transformed Problem

We consider Non-convex Problem

э

▲ロト ▲圖ト ▲園ト ▲園ト

We consider Non-convex Problem

$$\begin{array}{ll} \min_{x} & h(x) = \frac{1}{2} x^{T} H x + g^{T} x & (1) \\ \text{s.t.} & Ax \leq b, \\ & Dx = e, \\ & I \leq x \leq u, \\ & x = \left(x_{c}^{T}, x_{d}^{T}\right)^{T} \in \mathbb{R}^{n_{c}} \times \mathbb{Z}^{n_{d}}, \\ & H \text{ is indefinite} \end{array}$$

▲ロト ▲圖ト ▲園ト ▲園ト

э

$$H = \begin{bmatrix} H_{cc} & H_{cd} \\ H_{cd}^{T} & H_{dd} \end{bmatrix},$$

 $H_{cc} \in S^{n_c}$, $H_{dd} \in S^{n_d}$ and $H_{cd} \in \mathbb{R}^{(n_c, n_d)}$

・ロン ・聞と ・思と ・思と … 思

$$H = \begin{bmatrix} H_{cc} & H_{cd} \\ H_{cd}^{T} & H_{dd} \end{bmatrix},$$

 $H_{cc} \in \mathcal{S}^{n_c}$, $H_{dd} \in \mathcal{S}^{n_d}$ and $H_{cd} \in \mathbb{R}^{(n_c, n_d)}$

1. The n_c th principal leading submatrix H_{cc} is positive definite.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

$$H = \begin{bmatrix} H_{cc} & H_{cd} \\ H_{cd}^{T} & H_{dd} \end{bmatrix},$$

 $H_{cc} \in S^{n_c}$, $H_{dd} \in S^{n_d}$ and $H_{cd} \in \mathbb{R}^{(n_c, n_d)}$

- 1. The n_c th principal leading submatrix H_{cc} is positive definite.
- 2. The n_c th principal leading submatrix H_{cc} is invertible.

$$H = \begin{bmatrix} H_{cc} & H_{cd} \\ H_{cd}^T & H_{dd} \end{bmatrix},$$

 $H_{cc} \in S^{n_c}$, $H_{dd} \in S^{n_d}$ and $H_{cd} \in \mathbb{R}^{(n_c, n_d)}$

- 1. The n_c th principal leading submatrix H_{cc} is positive definite.
- 2. The n_c th principal leading submatrix H_{cc} is invertible.
- 3. The n_c th principal leading submatrix H_{cc} is singular.

(4 戸) (4 戸) (4 戸)

・ロン ・聞と ・思と ・思と … 思

$$V = egin{bmatrix} U_{cc} & U_{cd} \ 0 & U_{dd} \end{bmatrix},$$

 U_{cc} and U_{dd} are arbitrary invertible matrices

・ロト ・聞 ト ・ 国 ト ・ 国 ト

$$V = egin{bmatrix} U_{cc} & U_{cd} \ 0 & U_{dd} \end{bmatrix},$$

 U_{cc} and U_{dd} are arbitrary invertible matrices

 U_{cd} is an arbitrary matrix

・ 何 ・ ・ ミ ・ ・ ラ ・

$$\mathcal{V} = \begin{bmatrix} U_{cc} & U_{cd} \\ 0 & U_{dd} \end{bmatrix},$$

 U_{cc} and U_{dd} are arbitrary invertible matrices

 U_{cd} is an arbitrary matrix

Any matrix V with the above form is invertible

伺 ト イヨト イヨト

$$\ell = \begin{bmatrix} U_{cc} & U_{cd} \\ 0 & U_{dd} \end{bmatrix},$$

 U_{cc} and U_{dd} are arbitrary invertible matrices

 U_{cd} is an arbitrary matrix

Any matrix V with the above form is invertible

Let U_{dd} be the unimodular matrix

Let x = Vy problem (1) is equivalent to

$$\min_{y} \quad h(Vy) = \frac{1}{2} y^{T} V^{T} H V y + g^{T} V y$$
(3)
s.t. $AVy \leq b$,
 $DVy = e$,
 $l \leq Vy \leq u$,
 $y = \left[y_{c}^{T}, y_{d}^{T} \right]^{T}$,
 $U_{dd}y_{d} \in \mathbb{Z}^{n_{d}}$,
 $U_{cc}y_{c} + U_{cd}y_{d} \in \mathbb{R}^{n_{c}}$.

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト …

2

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

 $U_{dd}y_d \in \mathbb{Z}^{n_d} \Leftrightarrow y_d \in \mathbb{Z}^{n_d}.$

$$U_{dd}y_d \in \mathbb{Z}^{n_d} \Leftrightarrow y_d \in \mathbb{Z}^{n_d}.$$

$$U_{cc}y_c + U_{cd}y_d \in \mathbb{R}^{n_c} \Leftrightarrow y_c \in \mathbb{R}^{n_c}$$

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

$$U_{dd}y_d \in \mathbb{Z}^{n_d} \Leftrightarrow y_d \in \mathbb{Z}^{n_d}.$$

$$U_{cc}y_c + U_{cd}y_d \in \mathbb{R}^{n_c} \Leftrightarrow y_c \in \mathbb{R}^{n_c}$$

Problem (3) now takes the following form:

$$\begin{split} \min_{y} \quad h(Vy) &= \frac{1}{2} y^{T} V^{T} H V y + g^{T} V y \\ \text{s.t.} \quad AVy \leq b, \\ DVy &= e, \\ l \leq Vy \leq u, \\ y &= \left[y_{c}^{T}, y_{d}^{T} \right]^{T} \in \mathbb{R}^{n_{c}} \times \mathbb{Z}^{n_{d}}. \end{split}$$

・聞き ・ 国を ・ 国を

The Linear Transformation

$$\min_{y} \quad h(Vy) = \frac{1}{2} y^{T} V^{T} H V y + g^{T} V y$$
s.t.
$$AVy \leq b,$$

$$DVy = e,$$

$$I \leq Vy \leq u,$$

$$y = \left[y_{c}^{T}, y_{d}^{T} \right]^{T} \in \mathbb{R}^{n_{c}} \times \mathbb{Z}^{n_{d}}.$$

$$(4)$$

◆□▶ ◆圖▶ ◆厘▶ ◆厘≯

$$y^{T}V^{T}HVy = y_{c}^{T}U_{cc}^{T}H_{cc}U_{cc}y_{c} + 2y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cc} + U_{dd}^{T}H_{cd}^{T}U_{cc}\right)y_{c} + y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cd} + U_{cd}^{T}H_{cd}U_{dd} + U_{dd}^{T}H_{cd}^{T}U_{cd} + U_{dd}^{T}H_{dd}^{T}U_{dd}\right)y_{d}.$$
(5)

æ

Lower bounding problem at each B&B tree under estimates each of bilinear term (one variable and two constraints)

Lower bounding problem at each B&B tree under estimates each of bilinear term (one variable and two constraints)

$$y^{T}V^{T}HVy = y_{c}^{T}U_{cc}^{T}H_{cc}U_{cc}y_{c} + 2y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cc} + U_{dd}^{T}H_{cd}^{T}U_{cc}\right)y_{c}$$
$$+ y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cd} + U_{cd}^{T}H_{cd}U_{dd} + U_{dd}^{T}H_{cd}^{T}U_{cd}$$
$$+ U_{dd}^{T}H_{dd}U_{dd}\right)y_{d}.$$

We set $(U_{cd}^T H_{cc} U_{cc} + U_{dd}^T H_{cd}^T U_{cc}) = 0$ and see if U_{cc} and U_{dd} have desired properties

(4月) (日) (日)

We set $(U_{cd}^T H_{cc} U_{cc} + U_{dd}^T H_{cd}^T U_{cc}) = 0$ and see if U_{cc} and U_{dd} have desired properties

We know that U_{cc} is invertible so we have

 $H_{cc}U_{cd} = -H_{cd}U_{dd}.$ (6)

・ 同 ト ・ ヨ ト ・ - ヨ ト …

We set $(U_{cd}^T H_{cc} U_{cc} + U_{dd}^T H_{cd}^T U_{cc}) = 0$ and see if U_{cc} and U_{dd} have desired properties

We know that U_{cc} is invertible so we have

 $H_{cc}U_{cd} = -H_{cd}U_{dd}.$ (6)

 $U_{cd} = -H_{cc}^{-1}H_{cd}U_{dd}.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Calculation of U_{dd}

$$\underset{(U_{dd})_{i}}{\operatorname{argmin}} \left\{ \underset{x_{d}}{\max} \left[\left(U_{dd}^{-1} \right)_{i} x_{d} : x \in \Omega_{q} \right] - \underset{x_{d}}{\min} \left[\left(U_{dd}^{-1} \right)_{i} x_{d} : x \in \Omega_{q} \right] \right\}$$
(7)
s.t. $(U_{dd}^{-1})_{i,i} = \pm 1,$
 $(U_{dd}^{-1})_{i,j} = 0, \quad j = 1, \dots, i - 1,$
 $(U_{dd}^{-1})_{i,j} \in \mathbb{Z}, \quad j = i + 1, \dots, n_{d}.$

3

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

Calculation of U_{dd}

$$\underset{(U_{dd})_{i}}{\operatorname{argmin}} \left\{ \underset{x_{d}}{\max} \left[\left(U_{dd}^{-1} \right)_{i} x_{d} : x \in \Omega_{q} \right] - \underset{x_{d}}{\min} \left[\left(U_{dd}^{-1} \right)_{i} x_{d} : x \in \Omega_{q} \right] \right\}$$
(7)
s.t. $(U_{dd}^{-1})_{i,i} = \pm 1,$
 $(U_{dd}^{-1})_{i,j} = 0, \quad j = 1, \dots, i - 1,$
 $(U_{dd}^{-1})_{i,j} \in \mathbb{Z}, \quad j = i + 1, \dots, n_{d}.$

Calculation of U_{cc}

- H_{cc} is Hermitian it is diagonalisable. Let U_{cc} be the diagonalising matrix of H_{cc} .
- The columns of U_{cc} are the normalizing eigenvectors of H_{cc} .

$$y^{T}V^{T}HVy = y_{c}^{T}U_{cc}^{T}H_{cc}U_{cc}y_{c} + 2y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cc} + U_{dd}^{T}H_{cd}^{T}U_{cc}\right)y_{c}$$
$$+ y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cd} + U_{cd}^{T}H_{cd}U_{dd} + U_{dd}^{T}H_{cd}^{T}U_{cd}$$
$$+ U_{dd}^{T}H_{dd}U_{dd}\right)y_{d}.$$

æ

◆□ > → 御 > → 注 > → 注 >

$$y^{T}V^{T}HVy = y_{c}^{T}U_{cc}^{T}H_{cc}U_{cc}y_{c} + 2y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cc} + U_{dd}^{T}H_{cd}^{T}U_{cc}\right)y_{c}$$
$$+ y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cd} + U_{cd}^{T}H_{cd}U_{dd} + U_{dd}^{T}H_{cd}^{T}U_{cd}$$
$$+ U_{dd}^{T}H_{dd}U_{dd}\right)y_{d}.$$

$$\Theta_{dd} = U_{cd}^{\mathsf{T}} H_{cc} U_{cd} + U_{cd}^{\mathsf{T}} H_{cd} U_{dd} + U_{dd}^{\mathsf{T}} H_{cd}^{\mathsf{T}} U_{cd} + U_{dd}^{\mathsf{T}} H_{dd} U_{dd}.$$

æ

◆□ > → 御 > → 注 > → 注 >

$$y^{T}V^{T}HVy = y_{c}^{T}U_{cc}^{T}H_{cc}U_{cc}y_{c} + 2y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cc} + U_{dd}^{T}H_{cd}^{T}U_{cc}\right)y_{c}$$
$$+ y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cd} + U_{cd}^{T}H_{cd}U_{dd} + U_{dd}^{T}H_{cd}^{T}U_{cd}$$
$$+ U_{dd}^{T}H_{dd}U_{dd}\right)y_{d}.$$

$$\Theta_{dd} = U_{cd}^{\mathsf{T}} H_{cc} U_{cd} + U_{cd}^{\mathsf{T}} H_{cd} U_{dd} + U_{dd}^{\mathsf{T}} H_{cd}^{\mathsf{T}} U_{cd} + U_{dd}^{\mathsf{T}} H_{dd} U_{dd}.$$

 $U_{cd} = -H_{cc}^{-1}H_{cd}U_{dd}.$

Eric Newby and Montaz Ali (School of CcLinear Transformation-based Methods for

◆□> ◆圖> ◆園> ◆園> 三国

$$y^{T}V^{T}HVy = y_{c}^{T}U_{cc}^{T}H_{cc}U_{cc}y_{c} + 2y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cc} + U_{dd}^{T}H_{cd}^{T}U_{cc}\right)y_{c}$$
$$+ y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cd} + U_{cd}^{T}H_{cd}U_{dd} + U_{dd}^{T}H_{cd}^{T}U_{cd}$$
$$+ U_{dd}^{T}H_{dd}U_{dd}\right)y_{d}.$$

$$\Theta_{dd} = U_{cd}^{\mathsf{T}} H_{cc} U_{cd} + U_{cd}^{\mathsf{T}} H_{cd} U_{dd} + U_{dd}^{\mathsf{T}} H_{cd}^{\mathsf{T}} U_{cd} + U_{dd}^{\mathsf{T}} H_{dd} U_{dd}.$$

 $U_{cd} = -H_{cc}^{-1}H_{cd}U_{dd}.$

$$\Theta_{dd} = U_{dd}^{\mathsf{T}} \left(H_{dd} - H_{cd}^{\mathsf{T}} H_{cc}^{-1} H_{cd} \right) U_{dd}.$$
(8)

◆□> ◆圖> ◆園> ◆園> 三国

$$\min_{y} \quad h(Vy) = \frac{1}{2} \left(y_{c}^{T} \Theta_{cc} y_{c} + y_{d}^{T} \Theta_{dd} y_{d} \right) + g^{T} Vy$$
(9)
s.t. $AVy \leq b$,
 $DVy = e$,
 $l \leq Vy \leq u$,
 $y^{L} \leq y \leq y^{U}$,

$$\min_{x} \quad h(x) = \frac{1}{2}x^{T}Hx + g^{T}x$$
s.t.
$$Ax \leq b,$$

$$Dx = e,$$

$$l \leq x \leq u,$$

æ

・ロト ・個ト ・モト ・モト

The Transformed Problem

$$\begin{aligned}
& \min_{x} \quad h(Vy) = \frac{1}{2} \left(y_{c}^{T} \Theta_{cc} y_{c} + y_{d}^{T} \Theta_{dd} y_{d} \right) + g^{T} Vy \\
& \text{s.t.} \quad AVy \leq b, \ DVy = e, \ l \leq Vy \leq u, \ U_{dd} y_{d} = z \\
& y = \left[y_{c}^{T}, \ y_{d}^{T} \right]^{T} \in \mathbb{R}^{n_{c}} \times \mathbb{R}^{n_{d}}, \ z \in \mathbb{Z}^{n_{d}}.
\end{aligned}$$
(10)

$$\Theta_{dd} = U_{dd}^{T} \left(H_{dd} - H_{cd}^{T} H_{cc}^{-1} H_{cd} \right) U_{dd}$$

Eric Newby and Montaz Ali (School of CcLinear Transformation-based Methods for

æ

・ロト ・個ト ・モト ・モト

Calculation of U_{dd}

$$\operatorname{argmin}_{(U_{dd})_{i}} \left\{ \max_{x_{d}} \left[\left(U_{dd}^{-1} \right)_{i} x_{d} : x \in \Omega_{q} \right] - \min_{x_{d}} \left[\left(U_{dd}^{-1} \right)_{i} x_{d} : x \in \Omega_{q} \right] \right\}$$
(11)

s.t.
$$(U_{dd}^{-1})_{i,i} = \pm 1,$$

 $(U_{dd}^{-1})_{i,j} = 0, \quad j = 1, \dots, i - 1,$
 $(U_{dd}^{-1})_{i,j} \in \mathbb{Z}, \quad j = i + 1, \dots, n_d.$

3

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

Case 1: *H_{cc}* Positive Definite

Consider the convexification of the following non-convex MIQP

$$\min_{x} \quad h(x) = \frac{1}{2}x^{T}Hx + g^{T}x$$
s.t.
$$Ax \leq b,$$

$$Dx = e,$$

$$l \leq x \leq u,$$

$$H_{cc} \quad Positive Definite$$

-

・ 何 ・ ・ ミ ・ ・ ラ ・

Consider the convexification of the following non-convex MIQP

$$\min_{x} \quad h(x) = \frac{1}{2}x^{T}Hx + g^{T}x$$

s.t. $Ax \le b$,
 $Dx = e$,
 $l \le x \le u$,
 H_{cc} Positive Definite

Billionnet et al. (2012), Mathematical Programming 131, 381-401

Denote Convexification of above Problem as the Mixed Integer Quadratic Convex Reformulation (MIQCR)

Preprocessing before Convex Reformulation of Non-convex MIQP

Consider the Convexification of the following non-convex MIQP, H_{cc} Positive Definite

$$\begin{split} \min_{y} \quad h(Vy) &= \frac{1}{2} \left(y_{c}^{T} \Theta_{cc} y_{c} + y_{d}^{T} \Theta_{dd} y_{d} \right) + g^{T} Vy \\ \text{s.t.} \quad AVy &\leq b, \\ DVy &= e, \\ I &\leq Vy \leq u, \\ y^{L} &\leq y \leq y^{U}, \end{split}$$

Denote Convexification of above Problem as the Mixed Integer Quadratic Transformation and Convex Reformulation (MIQTCR)

Pörn et al, Comput. Chem. Eng (1999) The non-convex terms of the transformed problem are bilinear terms involving only the integer variables.

$$V = \begin{bmatrix} U_{cc} & U_{cd} \\ 0_{n_d,n_c} & \widetilde{U}_{dd} U_{dd} \end{bmatrix}$$

$$\min_{y} \quad h(Vy) = \frac{1}{2} \left(y_{c}^{T} \Theta_{cc} y_{c} + y_{d}^{T} \Theta_{dd} y_{d} \right) + g^{T} Vy$$
(12)
s.t. $AVy \leq b$,
 $DVy = e$,
 $l \leq Vy \leq u$,
 $y^{L} \leq y \leq y^{U}$

Convex Reformulation by Pörn et al (1999):

Convex Reformulation by Pörn et al (1999):

Applied to Our Transformed Problem (MIQTBC)

Convexification Results in a Convex MINLP – Not a Convex MIQP

Results obtained using MINLP solver: Couenne 0.3.2 on the NEOS server

Type 1. Bound constraints: $-2 \le x_i \le 2$

・ロン ・聞と ・思と ・思と … 思

- Type 1. Bound constraints: $-2 \le x_i \le 2$
- Type 2. Sparse linear inequality constraints: matrix A had sparse block diagonal structure

- Type 1. Bound constraints: $-2 \le x_i \le 2$
- Type 2. Sparse linear inequality constraints: matrix A had sparse block diagonal structure
- Type 3. Dense linear inequality constraints: matrix A was dense.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Type 1. Bound constraints: $-2 \le x_i \le 2$
- Type 2. Sparse linear inequality constraints: matrix A had sparse block diagonal structure

Type 3. Dense linear inequality constraints: matrix A was dense.

- MIQCR (Convex MIQP)
- MIQTCR (Convex MIQP)
- MIQTBC (Convex MINLP)
- Solver: Couenne 0.3.2 on the NEOS server

Comparison of Three Methods

n	MIQCR	MIQTCR	MIQTBC
4	5.412	4.313	1.330
6	42.082	20.522	6.456
8	47.235	49.611	19.410
10	110.43	192.12	151.96
12	301.37	451.29	475.54
14	1032.1	1688.3	2012.5

Table: The time taken to solve problems using Couenne for Constraints Type 2

MIQTBC	MIQTCR	MIQCR	n
0.657	1.714	3.094	4
12.45	10.15	15.83	6
68.34	255.03	99.32	8
1958.6	3687.3	5352.3	10

Table: The time taken to solve problems using Couenne for Constraints Type 3

▲ロト ▲圖ト ▲園ト ▲園ト

- $\bullet\,$ We have developed a B&B algorithm for solving this type of MIQPs
- Reduce Bilinear Terms in the during Linear Transformation

$$y^{T}V^{T}HVy = y_{c}^{T}U_{cc}^{T}H_{cc}U_{cc}y_{c} + 2y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cc} + U_{dd}^{T}H_{cd}^{T}U_{cc}\right)y_{c}$$
$$+ y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cd} + U_{cd}^{T}H_{cd}U_{dd} + U_{dd}^{T}H_{cd}^{T}U_{cd}$$
$$+ U_{dd}^{T}H_{dd}U_{dd}\right)y_{d}.$$

Results for Case 3: H_{cc} is Singular

Transformation uses the following form of Hessian

$$\begin{split} \Theta &= \Theta^{(1)} + \Theta^{(2)}, \\ \Theta &= \begin{bmatrix} \Theta^{(1)}_{cc} & 0 \\ 0 & \Theta^{(1)}_{dd} \end{bmatrix} + \begin{bmatrix} \Theta^{(2)}_{cc} & \Theta^{(2)}_{cd} \\ \Theta^{(2)T}_{cd} & \Theta^{(2)}_{dd} \end{bmatrix} \end{split}$$

 $\Theta_{cc}^{(1)}$, $\Theta_{cc}^{(2)}$, $\Theta_{dd}^{(2)}$ are diagonal; $\Theta^{(2)}$ is PD.

Theorem

 $\exists U_{cc}$ such that U_{cc} diagonalises H_{cc} and Θ can be written in the following form

$$\Theta = \begin{bmatrix} \Theta_{cc}^{(1)} & 0\\ 0 & \Theta_{dd}^{(1)} \end{bmatrix} + \Theta^{(2)}, \tag{14}$$

where $\Theta^{(2)}$ is positive definite.

(13)

$$y^{T}V^{T}HVy = y_{c}^{T}U_{cc}^{T}H_{cc}U_{cc}y_{c} + 2y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cc} + U_{dd}^{T}H_{cd}^{T}U_{cc}\right)y_{c}$$
$$+ y_{d}^{T}\left(U_{cd}^{T}H_{cc}U_{cd} + U_{cd}^{T}H_{cd}U_{dd} + U_{dd}^{T}H_{cd}^{T}U_{cd}$$
$$+ U_{dd}^{T}H_{dd}U_{dd}\right)y_{d}.$$

Choose V such that the Hessian $y^T V^T H V y$ (= Θ) is

$$\Theta = \Theta^{(1)} + \Theta^{(2)},$$

$$\Theta = \begin{bmatrix} \Theta^{(1)}_{cc} & 0\\ 0 & \Theta^{(1)}_{dd} \end{bmatrix} + \begin{bmatrix} \Theta^{(2)}_{cc} & \Theta^{(2)}_{cd}\\ \Theta^{(2)}_{cd} & \Theta^{(2)}_{dd} \end{bmatrix}$$
(15)

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

- $U_{cc}^{T}(H_{cc}U_{cd} + H_{cd}U_{dd})$ must must be small to make $\Theta^{(2)}$ PD.
- $U_{dd} = I_{n_d}$
- Find U_{cc} that diagonalize H_{cc} by setting $U_{cd}=0$.
- An algorithm for calculating U_{cc} is given

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Figure: Performance profile when H_{cc} Singular using B&B for $n_c = n_d$.

Figure: Performance profile when H_{cc} Singular using B&B for $n_c > n_d$.

Figure: Performance profile when H_{cc} Singular using B&B for $n_c < n_d$.

Thank You!

▲口▶ ▲圖▶ ▲国▶ ▲国▶ 三国