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@ The Non-convex MIQP and the Linear Transformation
© Preprocessing before Convexification of Non-convex MIQP

© Convex Reformulation of Non-convex MIQP
o Convexification by Semidefinite Programming (Billionnet et al (2012))
e Convexification of Bilinear Integer Terms (Porn et al (1999))

@ Method when Continuous part of the Hessian is Singular

© Numerical Comparison of the original and the Transformed Problem
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We consider Non-convex Problem
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The Non-convex MIQP

We consider Non-convex Problem

min  h(x) = EXTHX—I—gTX (1)
s.t. Ax < b,

Dx = e,

[ <x<u

His indefinite
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The Non-convex MIQP

The matrix H has the form

H H,
H = cc cd :| 7
[Hch Haq

Hee € 8™, Hyy € 8™ and Hy € R (ne;nd)
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The Non-convex MIQP

The matrix H has the form

H H,
H— cc cd :| ,
[Hch Haq

Hee € 8™, Hyy € 8™ and Hy € R (ne;nd)
1. The ncth principal leading submatrix H.. is positive definite.
2. The ncth principal leading submatrix H. is invertible.

3. The ncth principal leading submatrix H,. is singular.
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The Linear Transformation of Cases 1 & 2

We consider Linear Transformation of Cases 1 and 3
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The Linear Transformation of Cases 1 & 2

We consider Linear Transformation of Cases 1 and 3

o Ucc Ucd
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Uce and Ugy are arbitrary invertible matrices
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The Linear Transformation of Cases 1 & 2

We consider Linear Transformation of Cases 1 and 3

o Ucc Ucd
v=|%e . )

Uce and Ugy are arbitrary invertible matrices
U4 is an arbitrary matrix

Any matrix V with the above form is invertible

Let Ugy be the unimodular matrix
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The Linear Transformation

Let x = Vy problem (1) is equivalent to

1
min  h(Vy) = EyTVTHVy +g™W (3)
y
s.t. AVy < b,
DVy = e,
I<Vy <u,

;
y= [yl yﬂ :
Uddyd € Z",

Ucc}/c + Ucd}/d € R ™.
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The Linear Transformation

Ugqyq € Z"4; we therefore restrict Uyy to be some unimodular matrix.
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The Linear Transformation

Ugqyq € Z"4; we therefore restrict Uyy to be some unimodular matrix.

Uggya € 7' & Yd € 7",

Ucc}/c + Ucd)’d eER™ & Ye € R ™.

Problem (3) now takes the following form:

1
min  h(Vy) = EyTVTHVy +g™vy
y

s.t.  AVy < b,
DVy = e,
I <Vy <u,

.
y = [yj, yﬂ ER" x 7M.
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The Linear Transformation

1
min  h(Vy) = inVTHVy +g™vy (4)
y
s.t. AVy < b,
DVy = e,
[<Vy<u,

.
y = [yCT’ yﬂ cR" x 7.

yTVTHVY =yT UL HocUceye + 2y (UCZHCCUCC + ULH;UCC> Ve
1 (UHee Uea + Ul HeaUaa + UggHE Ued

+UggHad Udd) Yd- (5)
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Motivation for the choice of U, and Uyy

Lower bounding problem at each B&B tree under estimates each of
bilinear term (one variable and two constraints)
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Motivation for the choice of U, and Uyy

Lower bounding problem at each B&B tree under estimates each of
bilinear term (one variable and two constraints)

yTVTHVy =y UL Hee Ueeye + 2y.] (UCTdHCCUCC + UdeHCTdUCC) Ve
13 (UdiHee Uea + UlHeaUaa + UgyHE Ued

+UJyHaq Udd) Yd-
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Motivation for the choice of U, and Uyy

We set (Ul HecUce + UjyHL Ucc) = 0 and see if Ucc and Uyg have
desired properties
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Motivation for the choice of U, and Uyy

We set (Ul HecUce + UjyHL Ucc) = 0 and see if Ucc and Uyg have
desired properties

We know that U is invertible so we have

HeeUcd = —Heq Uqaq- (6)
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Motivation for the choice of U, and Uyy

We set (Ul HecUce + UjyHL Ucc) = 0 and see if Ucc and Uyg have
desired properties

We know that U is invertible so we have

HccUcd = —lcd Udd'

Ueg = —Hz Heg Uga-
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Calculating Uee and Uyy

Calculation of Ugy

argmin {max[(Uddl)iXd ix €Qq| — nj(Ln[(Udd) X4 x €Q ]} (7)

(Udd); d
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Calculating Uee and Uyy

Calculation of Ugy

argmin {max[(Uddl)iXd ix €Qq| — min[(Udd) X4 x €Q ]} (7)
(Uda); L xd

Calculation of Ugc

@ Hc is Hermitian it is diagonalisable. Let U, be the diagonalising
matrix of H..

@ The columns of U, are the normalizing eigenvectors of H.
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The Transformed Problem

yTVTHVy :.yCTUC—I(—:HCC Uccye + 2yJ (UZ;/HCC Uee + U‘LHL UCC) Ye
+ yJ (UCZHCCUCd + UCTdHchdd + U(LHLUCd

+UJyHdd Udd> Yd-
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The Transformed Problem

yTVTHVy :.yCTUC—I(—:HCC Uccye + 2yJ (UZ;/HCC Uee + U‘LH‘L UCC) Ye
+ yJ (UCZHCCUCC; + UCTdHchdd + U(LHLUCd

+UJyHdd Udd> Yd-

Oug = UL Hec Uy + UL Hog Ugg + UJyHL Uy + U fyHag Uga.
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The Transformed Problem
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The Transformed Problem

yTVTHVy :.yCTUC—I(—:HCC Uccye + 2yJ (UZ;/HCC Uee + U‘LH‘L UCC) Ye
+ yJ (UCZHCCUCC; + UCTdHchdd + U(LHLUCd

+UJyHdd Udd> Yd-
Oug = UL Hec Uy + UL Hog Ugg + UJyHL Uy + U fyHag Uga.
Ueg = —Hz Heg Uga-

Ouy = Ujy (Hdd — HLHC_cchd> Udd- (8)
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The Transformed Problem

) 1
myln h(Vy) = > (yCT@cc)/c +)/Jedd)/d) + gTVy (9)
st. AWy < b,
DVy = e,
I <Vy<u,
yh<y<yY,

1
min  h(x) = §XTHX +g'x

x
s.t. Ax < b,
Dx ,
I<x<u
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The Transformed Problem

. 1
min h(Vy) = 5 (yCT@ccyc + ydTedde) +g" Wy (10)

st. AWy < b, DVWy=¢e, I < Vy <u, Uyyqg =z

;
y= [ycT,yﬂ ERM™ xR™, zeZM.

Ods = Uy <Hdd - Hcchchchd) Udd
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Calculating Uee and Uyy

Calculation of Ugy

argmin {max[(Uddl),.xd I X E Qq] — min[(Udd) X4 :x €0 ]}
(Udga); L xd
(11)

(Udj})uzo, j=1,...,i—1,
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Case 1: H.. Positive Definite

Consider the convexification of the following non-convex MIQP

2

s.t. Ax < b,
Dx = e,
I<x<u

H.. Positive Definite
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Case 1: H.. Positive Definite

Consider the convexification of the following non-convex MIQP

1
min  h(x) = EXTHX +g7x
st. Ax < b,
Dx = e,
I <x<u,

H.. Positive Definite

Billionnet et al.(2012), Mathematical Programming 131, 381-401

Denote Convexification of above Problem as the Mixed Integer Quadratic
Convex Reformulation (MIQCR)
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Preprocessing before Convex Reformulation of Non-convex MIQP

Consider the Convexification of the following non-convex MIQP,
H.. Positive Definite

. 1
myln h(Vy) = 5 (ycT@ccyc + ydT@dde) +g" Wy
st. AWy < b,

DVy = e,

I < Vy <u,

yh<y <yY,

Denote Convexification of above Problem as the Mixed Integer Quadratic
Transformation and Convex Reformulation (MIQTCR)
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Preprocessing before Convex Reformulation

Porn et al, Comput. Chem. Eng (1999)
The non-convex terms of the transformed problem are bilinear terms

involving only the integer variables.

V= |: Ucc NUcd :|
Ongne UddUdd]
) 1

myln h(Vy) = > (ycT@cc)’c +}/J@dd}’d> +gTVy (12)
st. AWy < b,

DVy = e,

I <Vy<u,

yh<y <y
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Preprocessing before Convex Reformulation by Porn et al (1999)

Convex Reformulation by Pérn et al (1999):
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Preprocessing before Convex Reformulation by Porn et al (1999)

Convex Reformulation by Pérn et al (1999):
Applied to Our Transformed Problem (MIQTBC)
Convexification Results in a Convex MINLP — Not a Convex MIQP

Results obtained using MINLP solver: Couenne 0.3.2 on the NEOS
server
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Test Problem Characteristics

Type 1. Bound constraints: —2 < x; < 2
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Test Problem Characteristics

Type 1. Bound constraints: —2 < x; < 2

Type 2. Sparse linear inequality constraints: matrix A had sparse block
diagonal structure

Type 3. Dense linear inequality constraints: matrix A was dense.

MIQCR (Convex MIQP)
MIQTCR (Convex MIQP)
MIQTBC (Convex MINLP)

Solver: Couenne 0.3.2 on the NEOS server
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Comparison of Three Methods

n  MIQCR MIQTCR MIQTBC

4 5.412 4.313 1.330
6 42.082 20.522 6.456
8 47.235 49.611 19.410

10 110.43 192.12 151.96
12 301.37 451.29 475.54
14 1032.1 1688.3 2012.5

Table: The time taken to solve problems using Couenne for Constraints Type 2

MIQCR MIQTCR MIQTBC

3

4 3.094 1.714 0.657
6 15.83 10.15 12.45
8 99.32 255.03 68.34
10 5352.3 3687.3 1958.6

Table: The time taken to solve problems using Couenne for Constraints Type 3
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Results for Case 3: Hc. is Singular

@ We have developed a B&B algorithm for solving this type of MIQPs

@ Reduce Bilinear Terms in the during Linear Transformation

yTVTHVY =yT UL HocUeeye + 2y (UCZHCCUCC + ULHCLUCC> Ve
v (UHee Uea + Ul HeaUaa + UggHE Ued

+UJyHad Udd) Yd-
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Results for Case 3: Hc. is Singular

Transformation uses the following form of Hessian

o=0040®),

@(Ci) 0 @(Czc) @(2)
= [ 0 @(1)] + [@(m ) (13)
dd cd dd

@(clc), @(C2C), @fﬁf) are diagonal; 0 is PD.

3 U such that U.. diagonalises H.. and © can be written in the following
form

o o

(1)

@dd

+ 00, (14)

where ©() s positive definite.
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Results for Case 3: Hc. is Singular

yT\/THVy :yCTUC-I;Hcc Uccye + 2YJ (UZC—/HCC Uce + UJ;/HZc—/ UCC) Ye
+ yJ (UCZHCCUCd + UCTdHchdd + U(LHLUCd

+UJyHad Udd> Yd-

Choose V such that the Hessian y " VT HVy (=0) is

o=0W40®)

0 °] o2 O (15)
- 1 2)T 2
o o] 697 off
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Results for Case 3: Hc. is Singular

o UL (HeeUeq + HeqUgg) must must be small to make ©®@ pD.
*] Udd = /”d

o Find U that diagonalize H,. by setting U.4=0.

@ An algorithm for calculating U, is given
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Solution with n. < ny

Figure: Performance profile when H.. Singular using B&B for n. = ny.

08f
08
07 !'
061

™
vl
a 0.5

0.3f

02
oal Original ]
’ Transformed

0 10 20 30 40 50 60 7O BO 80 100

Eric Newby and Montaz Ali (School of CcLinear Transformation-based Methods for )




Solution with n. < ny

Figure: Performance profile when H.. Singular using B&B for n. > ny.
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Solution with n. < ny

Figure: Performance profile when H.. Singular using B&B for n. < ny.
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Thank You!
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