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The Idea

Consider a particle that is undergoing a random walk.

At every point in time we have a probability distribution for the location
of the particle.

This probability distribution evolves in time according to a governing
equation.



The Idea

For a discrete time system the governing equation is a difference
equation.

For a continuous time system the governing equation is a differential
equation.

If we construct a sequence of discrete time random walks that tend
towards a continuous time random walk, then we will also have a
sequence of difference equations that tend to the differential equation.



Advantages

As the approximation is always a governing equation for the random
walk then we have some guarantees about its behavior.

* |n the absence of reactions we know that the particle is not created
nor destroyed, so the scheme must conserve mass.

« The approximation is always a finite distance from the solution of the
differential equation.

We can use the tools of stochastic processes on the numerical method.




Example: A Biased Random Walk

The governing equation for finding the particle undergoing a biased
random walk at position x, at time tis:

X(x,t) =pr(x — Ax,t — A)X (x — Ax,t — At) + pi(x + Az, t — At) X (z + Ax,t — At)

Taking the “diffusion” limit of this process gives a Fokker-Planck
equation as the governing equation:

0X(z,t) D 0%X (x,t)

0
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Where

A2 . pr(x,t) —pi(x,t)
D Agfli?%o AL fla,t) = Jim BAx




Boltzmann weights

Boltzmann weights are taken for the jump probabilities.

exp(—pV (x + Ax,t))
exp(—pOV (x + Ax,t)) + exp(—pV (x — Ax, 1))

pr(l',t) —

This guarantees that 0 < p,.(z,t) < 1for all Az.




Example: Burgers Equation

Burgers equation,

Ou(x,1) . 82u(x,t) du(z,t)
TR TR
can be approximated by
w(ot) — u(x — Az, t — At)
T 1+ exp(22(u(x — 2Am,t — At) + 2u(z — Ax,t — At) + u(z, t — At)))
u(x — Az, t — At)

+
1 +exp(§—( (x — 2Ax,t — At) + 2u(x — Az, t — At) +u(x, t — At)))




Example: Burgers Equation
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Fractional Fokker-Planck Equation

The fractional Fokker-Planck equation is

ou(x,t) 07 —a 0 1—a
5 = DW (0D; ~“ (u(z, 1)) — 2D5% (f(2,t) oDy~ (u(z,1)))

WhereoD; ~“ (u(z,t)) is the Riemann-Liouville fractional derivative
defined by

$DI (uf 1)) = —— 2

t
- _aa—1
I'(a) 875/0 (t—v)* tu(z,v) dv 0<a<l

This equation is typically derived from the limit of a Continuous Time
Random Walk.




Fractional Fokker-Planck Equation

To find approximations for a fractional Fokker-Planck equation we need
to use a different discrete time random walk.

We modify the random walk by letting the particle wait for a random
number of time steps before jumping.

This introduces a waiting time probability distribution, ¥’ (n).

By choosing an appropriate heavy tailed distribution the governing
equations will limit to the fractional Fokker-Planck equation.



Discrete Time Random Walk

For such a random walk the governing equation is, in general,

u(x,nAt) =u(z, (n — 1)At) + p-(x — 1)At) Z K(n —m)u(z — Az, mAt)

n—1
+ pi(x + Az, (n — 1)At) Z K(n —m)u(z + Az, mAt) — Z K(n — m)u(z, mAt)
m=0
Where K(n) is the memory kernel associated with the waiting time
probability distribution. It is defined through it's Z transform with

s )

Where ¢(n)is the probability that the particle has not jumped by the n
time step since arriving at the site.




Sibuya Distribution

To limit to the fractional Fokker-Planck equation we take the Sibuya

waiting time distribution,
_ n—+1 F(a + 1) L 0%
vin) = (1" I'(n+ DIT(a—n+1) o(n) =[] (1 a E)

m=1

for O<a<landn>0. This gives a tractable memory kernel

'(n—1+a)
FNa—1)I'(n+1)

K(n) = 577,,1 +




Example: Fractional Diffusion Equation

The simplest fractional example is the fractional diffusion equation,
which just f(x,t)=0. Taking oc=%,and D=1
op(x,t) 2 0° p(x,1)
= Dt 5 —
ot 0x
With zero flux boundaries
op(x,t) _0 op(x,t) _0
ox |, ox |

and the initial condition

p(x,0)=0(x—1%)



Example: Fractional Diffusion Equation
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Reaction sub-diffusion equations

Schemes for more complicated equations can also be found with this
approach. For example the reaction sub-diffusion equation.

a : az t l-a ! 1 '
ug; 1) - D o [eXp(—J.Od(x,t')dt‘)Dt [exp(fod(x,t )dt )u(x,t)ﬂ—d(x,t)u(x,t)+b(x,t)

The stochastic process used is slightly different in this case. We take an
ensemble of randomly walking and reacting particles.




Non-linear morphogen death rates on semi-infinite domain
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