
Click to edit Present’s Name 

                Never Stand Still        Faculty of Science         School of Mathematics and Statistics 

Dr. Christopher Angstmann               SANUM 2016 
 

From discrete time random walks to numerical 
methods for fractional order differential equations  



Collaborators 

Everything 
Bruce Henry, UNSW 

Fractional Fokker-Planck equation and reaction sub-diffusion 
Isaac Donnelly, and James Nichols, UNSW 
Byron Jacobs, University of the Witwatersrand 

Fractional SIR models  
Anna McGann, UNSW 
 



References  

C. N. Angstmann et al. A discrete time random walk model for anomalous 
diffusion, J. Comput. Phys. (2015), doi:10.1016/j.jcp.2014.08.003 
 
C. N. Angstmann et al. From stochastic processes to numerical methods: A 
new scheme for solving reaction subdiffusion fractional partial differential 
equations J. Comput. Phys. (2016)  doi:10.1016/j.jcp.2015.11.053 
 
C. N. Angstmann et al. A fractional order recovery SIR model from a stochastic 
process. Bulletin of Mathematical Biology, (2016)  
doi:10.1007/s11538-016-0151-7 
 



The Idea 

Consider a particle that is undergoing a random walk. 
 
At every point in time we have a probability distribution for the location 
of the particle. 
 
This probability distribution evolves in time according to a governing 
equation. 



The Idea 

For a discrete time system the governing equation is a difference 
equation. 
 
For a continuous time system the governing equation is a differential 
equation.  
 
If we construct a sequence of discrete time random walks that tend 
towards a continuous time random walk, then we will also have a 
sequence of difference equations that tend to the differential equation.   



Advantages  

As the approximation is always a governing equation for the random 
walk then we have some guarantees about its behavior. 
•  In the absence of reactions we know that the particle is not created 

nor destroyed, so the scheme must conserve mass.  
•  The approximation is always a finite distance from the solution of the 

differential equation. 
 
We can use the tools of stochastic processes on the numerical method.  



Example: A Biased Random Walk   

The governing equation for finding the particle undergoing a biased 
random walk at position x, at time t is: 
 
 

Taking the “diffusion” limit of this process gives a Fokker-Planck 
equation as the governing equation: 
 
 
Where  
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Boltzmann weights 

Boltzmann weights are taken for the jump probabilities. 
 
 
 
This guarantees that                        for all      .                    
 
 
 
  
 
 

pr(x, t) =
exp(��V (x+�x, t))
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Example: Burgers Equation 

Burgers equation, 
 
 
can be approximated by   
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Example: Burgers Equation 



Fractional Fokker-Planck Equation 

The fractional Fokker-Planck equation is 
 
 
 
Where                      is the Riemann-Liouville fractional derivative 
defined by  
 
 
This equation is typically derived from the limit of a Continuous Time 
Random Walk. 
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Fractional Fokker-Planck Equation 

To find approximations for a fractional Fokker-Planck equation we need 
to use a different discrete time random walk.  
 
We modify the random walk by letting the particle wait for a random 
number of time steps before jumping.  
This introduces a waiting time probability distribution,        .  
 
By choosing an appropriate heavy tailed distribution the governing 
equations will limit to the fractional Fokker-Planck equation.   

 (n)



Discrete Time Random Walk  

For such a random walk the governing equation is, in general, 
 
 
 
 
Where K(n) is the memory kernel associated with the waiting time 
probability distribution. It is defined through it’s Z transform with  
 
 

Where        is the probability that the particle has not jumped by the n 
time step since arriving at the site.     
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Sibuya Distribution  

To limit to the fractional Fokker-Planck equation we take the Sibuya 
waiting time distribution, 
 
 
for              and        . This gives a tractable memory kernel  
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Example: Fractional Diffusion Equation 

The simplest fractional example is the fractional diffusion equation, 
which just f(x,t)=0. Taking           , and         .  
 
 
With zero flux boundaries 
 
 
and the initial condition   

 

∂ρ(x,t)
∂t

= Dt
1− 45 ∂

2ρ(x,t)
∂x2

∂ρ(x,t)
∂x x=0

= 0 ∂ρ(x,t)
∂x x=1

= 0

α = 4
5 D = 1

ρ(x,0) = δ (x − 1
2 )



Example: Fractional Diffusion Equation 
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Reaction sub-diffusion equations 

Schemes for more complicated equations can also be found with this 
approach. For example the reaction sub-diffusion equation. 
 
 
 
The stochastic process used is slightly different in this case. We take an 
ensemble of randomly walking and reacting particles.  
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Non-linear morphogen death rates on semi-infinite domain  
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