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World’s largest earthquake test. Japan, 2009.

NEES (Network for Earthquake Engineering Simulation),
Simpson Strong-Tie and Colorado State University
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“ Recent earthquakes have shown that damage in
non-structural components and in building contents can have
large economic consequences as well as safety and egress
concerns. ... (2) typically more than 75% of the construction
cost is associated with non-structural components; and (3)
localized damage in certain non-structural systems can affect
the functionality of large portions of the building.” - Reinoso
and Miranda, 2005.
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Need models to simulate effect of oscillations.
Tall buildings are often modelled as vertical beams.
[RM05] - 14 articles use beam models for buildings.
[RM05] - Building Seismic Safety commission and
American Society of Civil Engineers use analytical studies
and recovered data for safety specifications of new
buildings.
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Timoshenko model

Rigorous derivation from three-dimensional linear elasticity
presented in Cowper, 1966. Inspires confidence in the
model.
Stephen and Puchegger, 2006; Labuschagne, Van
Rensburg and Van der Merwe, 2009 - Timoshenko
theory compared to multi-dimensional model. Timoshenko
theory is an excellent approximation in the case of beam
applications, i.e. for transverse loads.
Van Rensburg and Van der Merwe, 2006; [LVV09] -
Timoshenko model compared to Rayleigh and
Euler-Bernoulli models. These models can be useful when
β is large.
Rayleigh and Euler-Bernoulli models are special cases of
Timoshenko model.
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Timoshenko model

Timoshenko model

Equations of motion:

ρA∂2
t w = ∂xV + Q, (1)

ρI∂2
t φ = V + ∂xM, (2)

The constitutive equations for the moment M and the shear
force V are

M = EI∂xφ, (3)
V = AGκ2(∂xw − φ

)
. (4)
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Timoshenko model

Dimensionless form of the Timoshenko model

∂2
t w = ∂xV + Q, (5)

1
α
∂2

t φ = V + ∂xM, (6)

M =
1
β
∂xφ, (7)

V = ∂xw − φ. (8)

The boundary conditions for a cantilever beam are

w(0, t) = φ(0, t) = 0

at the clamped end and

M(1, t) = 0 and V (1, t) = 0

at the free end.
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Simplified models

Rayleigh model

Assume that the cross section remains perpendicular to the
neutral plane. This implies that ∂xw = φ.

∂2
t w =

1
α
∂2

t ∂
2
x w − ∂2

x M + Q, (9)

M =
1
β
∂2

x w . (10)

The boundary conditions are the same as for the Timoshenko
beam except that ∂xw(0, t) = 0 replaces φ(0, t) = 0.
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Simplified models

Shear-T model

Han, Benaroya and Wei, 1999 consider four beam theories
where in one shear is taken into account but not rotary inertia.

Shear-T model

∂2
t w = ∂xV , (11)

0 = V + ∂xM. (12)

The constitutive equations and boundary conditions are the
same as for the Timoshenko model.
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Stiffness parameter

Stiffness parameter
1
β

β =
AGκ2`2

EI

(
α =

A`2

I
and γ =

β

α

)
[VV06]; [LVV09] - Timoshenko model compared to Rayleigh
and Euler-Bernoulli models. These models can be useful when
β is large.

Depending on initial data / manner of excitation, value of β
between 300 and 1200 may be sufficient.
For β ≈ 300 fundamental frequency for these models is
acceptable but not the higher frequencies.
For β < 100 they should not be considered.
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Modes of Vibration

Modes of vibration

Natural frequencies of vibration is used to compare beam
models. This approach was also used in

[SP06] and [LVV09] - Timoshenko v.s. multi-dimensional
model;
[VV06] and [LVV09] - Timoshenko v.s. Rayleigh and
Euler-Bernoulli.

For the modal analysis we follow [VV06].
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Modes of Vibration

Eigenvalue problem Timoshenko

Consider Equations (5) and (6) of Timoshenko model, do
separation of variables to obtain eigenvalue problem

−u′′ + ψ′ = λu, (13)

−1
β
ψ′′ − u′ + ψ =

λ

α
ψ, (14)

with the boundary conditions given by

u(0) = ψ(0) = u′(1)− ψ(1) = ψ′(1) = 0. (15)

To calculate eigenvalues and eigenfunctions use method in
[VV06].
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Modes of Vibration

To calculate eigenvalues for Shear-T model, use eigenvalue
problem for Timoshenko with λ = 0 in equation (14).

To justify this, replace
1
α

by
γ

β
and let γ = 0. (λ depends

continuously on γ.)

Frequency equation:

(
λ+ µ2

λ− ω2 +
λ− ω2

λ+ µ2

)
coshµ cosω +

(
ω

µ
− µ

ω

)
sinhµ sinω = 2,

but with

ω2 =
λ

2

(√
1 +

4β
λ

+ 1

)
and µ2 =

λ

2

(√
1 +

4β
λ
− 1

)
.
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Modes of Vibration

Comparison of Shear-T and Timoshenko eigenvalues

βLA52 = 50.
For Timoshenko model γ = 0.25 and γ = 0 for Shear-T model.

LA-52: North-South oscillation
Timoshenko model Shear-T model

k λk λk
1 0.2190 0.2232
2 5.3522 5.8336
3 27.3517 30.4359
4 69.5214 78.4895
5 132.8139 150.5247
6 201.4049 244.7589
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Beam models for high-rise structures

Beam models for high-rise structures

Adapted Timoshenko model

ρ∗∂2
t u = ∂xS + P, (16)

ρ∗∂2
t w = ∂xV + Q, (17)

ρ∗

α
∂2

t φ = V + ∂xM + S∂xw , (18)

M =
1
β
∂xφ, (19)

V = ∂xw − φ, (20)

S =
1
γ
∂xu. (21)
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Beam models for high-rise structures

Parameter ρ∗

- Entire structure cannot be considered as a beam.
- Seems reasonable that part of building may be modelled

as beam. (Reinforced concrete frames, steel frames and
shear walls are mentioned in [RM05].)

- Additional mass that does not contribute to stiffness of the
structure is present.

- Let ρRM denote mass per unit length used in [RM05], then
ρRM > ρA, where ρA is mass per unit length of the “beam”.

- Let ρ∗ =
ρRM

ρA
, then ρ∗ > 1.
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Beam models for high-rise structures

Only consider transverse vibration.

S = µ(1− x), µ =
ρg`
Gκ2 << 0.1.

A force density considered in Wang, Fung and Huang,
2001 but not in [RM05].
Effect of S is hardly noticable.
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Beam models for high-rise structures

Adapted Timoshenko model

ρ∗∂2
t w = ∂xV , (22)

γρ∗

β
∂2

t φ = V + ∂xM + S∂xw . (23)

Note that
1
α

was replaced by
γ

β
.

w(0, t) = wE(t), u(0, t) = φ(0, t) = 0.
M(1, t) = 0 and V (1, t) = 0.

Earthquake induced oscillations

The force density Q = 0.
In general u(0, t) 6= 0.
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Beam models for high-rise structures

Equivalent problem

The earthquake model problem is equivalent to an artificial
“wind problem” for a cantilever beam.

The boundary condition w(0, t) = wE(t) can be homogenized:
Let w̃(x , t) = w(x , t)− wE(t)y(x) and Ṽ = ∂x w̃ − φ.

Equations (22) and (23) are transformed as follows

ρ∗∂2
t w̃ = ∂x Ṽ − ρ∗wE − ρ∗ẅEy , (24)

γρ∗

β
∂2

t φ = Ṽ + wEy ′ + ∂xM − ∂xwS, (25)

where y(x) = 1 + x − 1
2

x2.
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Beam models for high-rise structures

Boundary conditions:

y(0) = 1 implies

w̃(0, t) = wE(t)− wE(t)y(0) = 0.

At the top

Ṽ (1, t) = V (1, t)− wE(t)y ′(1) = V (1, t) = 0.

The other boundary conditions remain unchanged, i.e.

M(1, t) = 0 and φ(0, t) = 0.

We now have a model problem for a cantilever beam.
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Beam models for high-rise structures

Shear-M model

It is derived from a model in Miranda, 1999 for a building in
equilibrium subjected to a distributed load Q (equivalent
problem). A shear beam is combined with an Euler-Bernoulli
(flexural) beam.

ρ∗∂2
t w − σ∂2

x w +
1
β
∂4

x w = Q, where σ =
GsAs

GAκ2 . (26)

In [RM05] the boundary conditions are not discussed. At x = 0
may use the boundary conditions for Rayleigh and at the top

∂2
x w(1, t) = 0 and ∂xw(1, t)− 1

βσ
∂3

x w(1, t) = 0.

Note that gravity is neglected in this model.
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Beam models for high-rise structures

Stiffness ratio parameter in [RM05]: αM = βσ.

Eigenvalue problem

u(4) − αMu′′ − λαMu = 0, with

u(0) = u′(0) = 0,
1
αM

u′′′(1)− u′(1) = 0,

u′′(1) = 0.

Authors make use of their model to obtain the values of the
parameters.
Values of β and σ are not given separately in article - only
αM is given.
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Beam models for high-rise structures

From the boundary conditions we also obtain the following
frequency equation

(
2
µ2ω2

β
− ω2 + µ2

)
coshµ cosω

+

(
2µω − µ3ω

β
+
µω3

β

)
sinhµ sinω

+
µ4 + ω4

β
− µ2 + ω2 = 0, with

µ2 =
β

2

(
1 +

√
1 +

4λ
β

)
and ω2 =

β

2

(
−1 +

√
1 +

4λ
β

)
.
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Beam models for high-rise structures

Comparison of two buildings using data from [RM05].

LA-52 LA-54
Height ±200m ±200m
Floor dimensions 48m × 48m 60m × 37m

αM
αM,NS = 7.82

αM,EW = 6.62
αM,NS = 27.52

αM,EW = 302

Fundamental pe-
riod

TNS = 5.8
TEW = 6

TNS = 6.2
TEW = 5.2

Peak ground ac-
celeration

PGANS = 165
PGAEW = 109

PGANS = 165
PGAEW = 98

Peak roof accel-
eration

PRANS = 389
PRAEW = 220

PRANS = 177
PRAEW = 139
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Simulation

Nature of the disturbance should be taken into account -
will determine number of modes involved. (If manner of
excitation is such that only first mode is considered, then
Euler-Bernoulli beam may still be fine.)

Earthquake models: don’t know how many modes are
involved - simulation is necessary.
To investigate effect of disturbance our preliminary
experiment was to simulate each model separately to
observe the transient response of the structure.
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Results

Transient response of a building due to earthquake using
Timoshenko model. Full period of the ground disturbance

τg = 8, w(0, t) = wE = D sin(Ct).
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Results

Illustration of effect of β using Timoshenko model

β = 50 (in red) v.s. β = 800 (in blue).
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Results

Comparison of models

Consider the motion of top of building for full period of ground
motion.

β = 50 β = 800

Timoshenko (blue) v.s. Shear-T (red)
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Results

β = 50 β = 800

Timoshenko (blue) v.s. Rayleigh (red)
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Conclusion

Rayleigh and Euler-Bernoulli only for 300 < β < 1200.
Shear-T compares well to Timoshenko - but difficulty in
programming and no gain.
Shear-M cannot be compared to Timoshenko using
[RM05] data. Solution: Artificial building or data from
another artical.
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END

Thank you
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