Fluid driven hydraulic fracture in a permeable medium

A.G. Fareo M.W. Nchabeleng

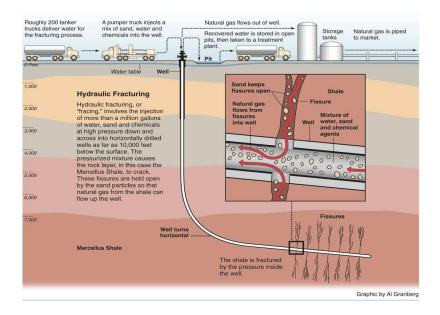
School of Computer Science and Applied Mathematics University of the Witwatersrand Johannesburg

SANUM 2016

A.G. Fareo M.W. Nchabeleng School of Computer Science Fluid driven hydraulic fracture in a permeable medium

- Hydraulic fracturing(also called Fracking) is the process by which fractures in rocks are propagated by the injection of high pressure viscous fluid into the fracture
- Hydraulic fracture technique is a core technology in the production of petroleum, natural gas, natural gas liquids such as ethane and propane trapped within rock layer thousands of feet(> 2000metres) below the earth surface

伺下 イヨト イヨト

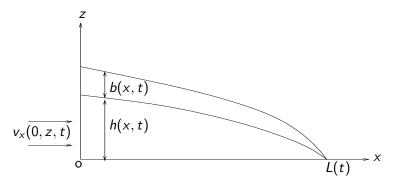


A.G. Fareo M.W. Nchabeleng School of Computer Science Fluid driven hydraulic fracture in a permeable medium

・ロト ・四ト ・ヨト ・ヨト

3

A two-dimensional fracture driven by an incompressible Newtonian fluid.



< ∃⇒

The following assumptions are made for our model:

- The injected fluid is Newtonian and fluid flow inside the fracture is laminar
- The rock is a permeable medium and there is fluid leak-off into the rock matrix.
- The rock is a linearly elastic material which assumes small displacement gradients.
- The fracture propagates along the positive x-direction, is one-sided, 0 ≤ x ≤ L(t), identical in every plane y=constant and has length L(t) and half-width h(x, t).
- The flow of fluid inside the fracture is modelled using lubrication theory.

回り くほり くほう

Fluid flow equations in the fracture

$$\nabla . \vec{v} = 0$$

$$ho rac{\partial ec{v}}{\partial t} +
ho (ec{v}.
abla) ec{v} = -
abla oldsymbol{p} + \mu
abla^2 ec{v}$$

Fluid flow equations in the porous matrix

$$\frac{Q}{A} = \frac{\partial(b+h)}{\partial t} = -\frac{\kappa}{\mu} \nabla p_d$$

p(x, t) is the fluid pressure, ρ is the fluid density

 μ is the fluid viscosity, κ is the permeability Body force is neglected $\frac{Q}{A}$ is the volume flow per unit area

By making the thin fluid film approximation of lubrication theory,

$$\epsilon = \frac{H}{L_0} << 1, \quad \epsilon^2 Re << 1,$$

where

- L_0 is a typical fracture length,
- T is characteristic time it takes to initiate fracture. If there is fluid leak-off, $T > \frac{L}{U}$ (N.N Smirnov and V.R Tagirova)
- H is a typical fracture half-width,
- U is a typical fluid speed in the x-direction and
- *Re*, the Reynolds number is $\frac{\rho U L_0}{\mu}$
- the characteristic pressure is defined as $\frac{\mu U}{L_0 \varepsilon^2}$,

伺 と く き と く き とう

Two-dimensional lubrication theory equations in dimensional form:

$$\frac{\partial p}{\partial x} = \mu \frac{\partial^2 v_x}{\partial z^2}, \quad \frac{\partial p}{\partial z} = 0, \quad \frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial z} = 0.$$

Darcy equation

$$\frac{\partial b}{\partial t} = -\frac{\kappa}{\mu} \frac{\partial p_d}{\partial z}$$

A.G. Fareo M.W. Nchabeleng School of Computer Science Fluid driven hydraulic fracture in a permeable medium

個 と く ヨ と く ヨ と

Boundary conditions and PKN approximation

$$z = h(x, t): v_x(x, h(x, t), t) = 0,$$

$$z = h(x, t): v_z(x, h(x, t), t) = \frac{\partial(h+b)}{\partial t}.$$

$$z=0: \quad v_z(x,0,t)=0, \quad \frac{\partial v_x}{\partial z}(x,0,t)=0.$$

$$p = p_f - \sigma_0 = \Lambda h$$
, where $\Lambda = \frac{E}{(1 - \sigma^2)B}$

E and σ are Youngs modulus and Poisson ratio respectively and B is the unit breadth along *y*.

$$p_d(x, h+b, t) = 0$$
 and $p_d(x, h, t) = \Lambda h$

Flow velocity:

$$v_x = rac{1}{2\mu} rac{\partial p}{\partial x} \left(z^2 - h^2
ight)$$

Nonlinear equations

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (h \bar{v}_x) = -\frac{\partial b}{\partial t}$$
$$\frac{\partial b}{\partial t} = \frac{\Lambda \kappa}{\mu} \frac{h}{b}$$

where

$$\bar{v}_x = -\frac{h^2}{3\mu}\frac{\partial p}{\partial x}$$

(1日) (1日) (日)

Dimensionless equations

$$\Omega \frac{\partial h}{\partial t} - \frac{\partial}{\partial x} \left(h^3 \frac{\partial h}{\partial x} \right) + \frac{1}{\Gamma} \frac{h}{b} = 0$$
$$\frac{\partial b}{\partial t} = \frac{h}{b}$$

At the fracture tip, x = L(t):

$$h(L(t), t) = 0$$
, and $b(L(t), t) = 0$.

The initial conditions are

$$t = 0$$
: $L(0) = 1$, $h(0, 0) = 1$.

A pre-existing fracture exists in the rock mass:

$$t = 0$$
: $h(0, x) = h_0(x), \quad 0 \le x \le L(t),$

where $h_0(0) = 1$. Dimensionless numbers: $\Omega = \frac{LH}{UTH}$ and $\Gamma = \frac{UH}{VL}$

Global mass balance

 $\left(\begin{array}{c} \text{rate of change of total} \\ \text{volume of fracture} \end{array}\right) = \left(\begin{array}{c} \text{rate of flow of fluid into} \\ \text{fracture at the fracture entry} \end{array}\right)$

 $-\left(\begin{array}{c} \text{rate of flow of leaked-off} \\ \text{fluid at the fluid-rock interface} \end{array}\right).$

That is,

$$\frac{dV}{dt}=Q_1-Q_2,$$

where

$$V(t) = 2 \int_0^{L(t)} h(x,t) \,\mathrm{d}x,$$

$$Q_1(0,t) = 2 \int_0^{h(0,t)} v_x(0,z,t) \, \mathrm{d}z = 2h(0,t) ar v_x(0,t),$$

and

$$Q_2(t) = 2 \int_0^{L(t)} \frac{\partial b}{\partial t}(x, t) \, \mathrm{d}x.$$

A.G. Fareo M.W. Nchabeleng School of Computer Science

Fluid driven hydraulic fracture in a permeable medium

The problem is therefore to solve the nonlinear diffusion equation

$$\Omega \frac{\partial h}{\partial t} - \frac{\partial}{\partial x} \left(h^3 \frac{\partial h}{\partial x} \right) + \frac{1}{\Gamma} \frac{h}{b} = 0$$
$$\frac{\partial b}{\partial t} = \frac{h}{b}$$

for the fracture half-width subject to the boundary condition

$$h(L(t), t) = 0$$
 and $b(L(t), t)$.

and the balance law

$$\frac{dV}{dt} = -2h^3(0,t)\frac{\partial h}{\partial x}(0,t) - 2\int_0^{L(t)}\frac{\partial b}{\partial t}(x,t)\,\mathrm{d}x,$$

where $\Omega = \frac{LH}{UTH}$ and $\Gamma = \frac{UH}{v_l L}$

向下 イヨト イヨト

 $h = \Phi(x, t)$ and $b = \Psi(x, t)$ are group invariant solutions provided

$$X(h - \Phi(x, t)) \bigg|_{h=\Phi} = 0.$$

 $X(b - \Psi(x, t)) \bigg|_{b=\Psi} = 0.$

where

$$X = (c_1 + c_2 t) \frac{\partial}{\partial t} + (c_4 + 2c_2 x) \frac{\partial}{\partial x} + c_2 h \frac{\partial}{\partial h} + c_2 b \frac{\partial}{\partial b}$$
$$(c_1 + c_2 t) \frac{\partial h}{\partial t} + (c_4 + 2c_2 x) \frac{\partial h}{\partial x} = c_2 h$$
$$(c_1 + c_2 t) \frac{\partial b}{\partial t} + (c_4 + 2c_2 x) \frac{\partial b}{\partial x} = c_2 b$$

御 と く き と く き と … き

The Case $c_2 = 0$ yields solution of the traveling waves type.

$$h(x,t) = f(\xi), \qquad b(x,t) = g(\xi)$$

where $\xi = x - \frac{c_4}{c_1}t$

Case $c_2 \neq 0$ Group invariant solution for the half-width and leak-off depth:

$$h(x,t) = (c_1 + c_2 t) f(\xi)$$
 and $b(x,t) = (c_1 + c_2 t) g(\xi)$

where

$$\xi = \frac{c_4 + 2c_2x}{(c_1 + c_2t)^2}$$

く 同 ト く ヨ ト く ヨ ト

Choose $c_4 = 0$ so that $\xi = 0$ when x = 0.

Boundary condition h(L(t), t)) = 0 implies f(w) = 0, where

$$w(t) = rac{2c_2L(t)}{(c_1 + c_2t)^2}$$

$$\frac{df}{dw}\frac{dw}{dt} = 0 \Longrightarrow L(t) = \left(1 + \frac{c_2}{c_1}t\right)^2$$

$$u = \frac{x}{L(t)}, \quad \xi = \frac{2c_2}{c_1^2}u, \quad f(\xi) = \left(\frac{c_2}{c_1^4}\right)^{\frac{1}{3}}F(u), \quad g(\xi) = \frac{1}{c_2}G(u)$$

Since $h(0,0) = 1$, $f(0) = \frac{1}{c_2}$ and $F(0) = \left(\frac{c_2}{c_1}\right)^{-\frac{1}{3}}$

・ 回 ト ・ ヨ ト ・ ヨ ト

The problem is to solve the system

$$\Omega\left(F(u) - 2u\frac{dF}{du}\right) - \frac{d}{du}\left(F^{3}(u)\frac{dF}{du}\right) + \frac{1}{\Gamma}\frac{F(u)}{G(u)} = 0$$
$$2u\frac{dG}{du} - G(u) + \left(\frac{c_{2}}{c_{1}}\right)^{\frac{4}{3}}\frac{F(u)}{G(u)} = 0$$

subject to the boundary conditions

$$F(1) = 0, \quad G(1) = 0$$

$$F(0)^{3} \frac{dF}{du}(0) = -3 \left[\int_{0}^{1} F(u) du + \left(\frac{c_{2}}{c_{1}}\right)^{-\frac{4}{3}} \int_{0}^{1} G(u) du \right].$$
where $F(0) = \left(\frac{c_{2}}{c_{1}}\right)^{-\frac{1}{3}}$

(B) (B)

A.G. Fareo M.W. Nchabeleng School of Computer Science Fluid driven hydraulic fracture in a permeable medium

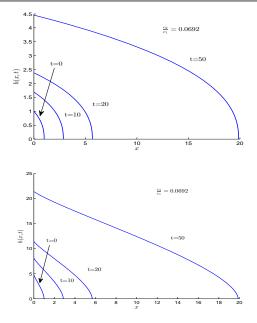
Once F(u) has been calculated, h(x, t) and b(x, t) are obtained from

$$h(x,t) = \left(1 + \frac{c_2}{c_1}t\right)\frac{F(u)}{F(0)},$$
$$b(x,t) = \left(1 + \frac{c_2}{c_1}t\right)F(0)^3G(u),$$

A.G. Fareo M.W. Nchabeleng School of Computer Science Fluid driven hydraulic fracture in a permeable medium

→ E → < E →</p>

Case $\Omega = \frac{LH}{IITH} \ll 1$ and $\Gamma = \frac{UH}{VI} \sim 1$ (Strong leak-off) $\frac{d}{du}\left(F^{3}(u)\frac{dF}{du}\right) - \frac{F(u)}{G(u)} = 0$ $2u\frac{dG}{du} - G(u) + \left(\frac{c_2}{c_1}\right)^{\frac{4}{3}}\frac{F(u)}{G(u)} = 0$ subject to F(1) = 0, G(1) = 0 $F(0)^3 \frac{dF}{du}(0) = -3 \left| \int_0^1 F(u) \mathrm{d}u + \left(\frac{c_2}{c_1}\right)^{-\frac{4}{3}} \int_0^1 G(u) \mathrm{d}u \right|.$ where $F(0) = \left(\frac{c_2}{c_1}\right)^{-\frac{1}{3}}$. $F(u) \sim \left(\frac{686}{45}\right)^{\frac{1}{7}} \left(\frac{c_2}{c_1}\right)^{-\frac{4}{21}} (1-u)^{\frac{3}{7}}$ $G(u) \sim \frac{49}{15} \left(\frac{45}{686}\right)^{\frac{3}{7}} \left(\frac{c_2}{c_1}\right)^{\frac{12}{21}} (1-u)^{\frac{5}{7}}$



æ