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Ultraspherical spectral method

(A very quick recap)

v

Olver & Townsend, “A fast and well-conditioned spectral method” (2012)
Two key ingredients: (banded differentiation & conversion operators)

I T6) = U 1(x), T3 = 5 (Un(X) = Un-2(x)

Natural factorization of the Chebyshev (coefficient) differentiation matrix:

v

v

Diau = S™'Dus

v

When solving ODEs:

U +u=f— (Dys + S)u = Sf

v

Higher-order version uses similar relationships for Ultraspherical polynomials

v

Advantages:

» Fast (banded matrices)
» Well-conditioned (ill-conditioning is in S71)
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Ultraspherical spectral method
(A very quick recap)
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Ultraspherical spectral method

(A very quick recap)

To solve v'(x) = f(x), u(1)=0:

[ 1 1 1 1 1] [ ]
[ 1 5] [ 1 ]
[ 4 8 Ju= [ 1 11
[ 6 10 ] [ 1 ]
[ 8 ] [ 1 ]
[ 10 ] [ 11
[1 1 1 1 1 1] [ ]
[ 1 1 [1 -0.5 ]
[ 2 lu= [ 0.5 -0.5 1f
[ 3 ] [ 0.5 -0.5 ]
[ 4 ] [ 0.5 -0.5]
[ 51 [ 0.5 ]
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Ultraspherical spectral method
(A very quick recap)

[2 -2/3 -2/15 ] L ]
[ 2 3 51 [ 1 ]
[ 5 8 Ju= [ 1 1 f
[ 7 10 ] L 1 ]
[ 8 ] [ 1 ]
[ 11 ] [ 1]
[2 -2/3 -2/15 ] [ ]
[1 1 -0.5 ] [1 -0.5 ]
[ 0.5 2 -0.5 Ju= [ 0.5 -0.5 1 £
[ 0.5 3 -0.5 ] L 0.5 -0.5 ]
[ 0.5 4 -0.5] [ 0.5 -0.5]
[ 0.5 51 L 0.5 ]
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FRACTIONAL CALCULUS:
BACKGROUND / HISTORY




Fractional calculus: Background / History

(300 hundred years in 30 seconds)

» History
» L'Hépital, Leibniz, Euler, Lacroix, Laplace, Fourier, Abel, Liouville, Riemann, ...
» “This [d'/?x/dx"/?] is an apparent paradox from which, one day, useful
consequences will be drawn.” — Leibniz, 1695
» Mathematical intuition
a ., m o T(m+1) . A x et
o~ m-m* Crmonzn o WX =5y | x0T

v

Physical interpretation
» Non-Gaussian random walks & heavy-tailed distributions. Memory processes.

v

Application areas
» Epidemiology
» Finance

> Physics S e Y - -
» Porous media, ... QY e f’ ! ?
Z \Fh old chap! 74

)

1See Bertram Ross, The Development of Fractional Calculus 1695-1900, (1997) for an excellent discussion of the history of fractional calculus.

nickhale@sun.ac.za Page 5/18



FRACTIONAL INTEGRAL
EQUATIONS




Fractional integral equations
Definition and some examples
Fractional integral definition?:

_ (M
JQL(X) = r(#)f; RN at.

Fractional integral of monomials:

oQan =

n! S
r(n+u+1) '

Fractional integral of exponentials and trigonometric functions:

_Qke™=n"te™ and __Qfsin(nx) = n"*sin(nx — um/2).

Fractional integral of weighted Jacobi polynomials (“polyfractinomials”):

@1+ oy P () = ZEET LT (g yinnpenin

2These are left-sided integrals. One can also define right-sided integrals. \e
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Fractional integral equations

Fractional integrals and conversion operators for Jacobi polynomials

Fractional integral of weighted Jacobi polynomials (“polyfractinomials”):

_B(B+n+1,u)
a M(w)

LQL[(1+ 0PI (x) (1 + x)PHHPLHP ) ().

The following conversions are also useful:

n+a+p+1 1 n+a 1

P () — pls1) (5 (af+1)

() 2n+a+p+1 " ( )+2n+a+ﬁ+1 n-1
NtE  plasip

n+0(+5+1 P(a—H’ﬁ)
2n+a+p+1 " 2n+a+p+1 1
2n+ 24 p@h)

2n+a+p+2 "

()=

2n+2
1 P(afﬂ'H) _ P(afﬁ)
( +X) n (X) 2n+0(—|—‘8+2 n+1 (X)+

(x).
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Fractional integral equations

Special cases: half-integrals of Legendre and weighted Chebyshev polynomials

» Combining these formulae leads to two important special case:

» Therefore half-integration is a banded operator between these spaces.
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Fractional integral equations

Second-kind Abel equation

Abel integral equation:

u(t) B
By dt = e(x) + V1 + xf(x)
Ansatz

Zan +V1+benUn

Leads to the (infinite dlmenS|onaI) linear system

M Qe (@) _(e
QA b )=\ f

[ee] [o¢]

e(x) =) enPa(x),  f(x) =) fUn(x) g

where

n=0 n=0
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Fractional integral equations

Second-kind Abel equation (cont.)

Au(x)+£j\/l;(;_)tdt = e(x) + V1 + xf(x) o

a MoQpE \(a)_(e) .l
A = 1/2 e
b Qug Al b f -

20+

> The operator/matrix A is block-banded.

» Interlacing the coefficients like o
[0, bo, @1, b1,...]T gives a tridiagonal 35
matrix. a0f

45

» Non-constant coefficients also work, | o
but will increase bandwidth. 0 10 20 30 40 50

nz = 148
» If e and f are analytic, convergence is geometric. \e
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Fractional integral equations

Second-kind Abel equation (cont.)

Au(x)+£j\/l;(;_)tdt = e(x) + V1 + xf(x) o

1/2 5p 0T,
A a - AI QCféebg a — e 10+ 3
b/ Qr A b f sl

20+

> The operator/matrix A is block-banded.
» Interlacing the coefficients like 30r
[0, bo, @1, b1,...]T gives a tridiagonal 35
matrix. a0f
45

» Non-constant coefficients also work, | | | i)
but will increase bandwidth. 0 10 20 30 40 50

nz = 148
» If e and f are analytic, convergence is geometric. \e
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Fractional integral equations

Second-kind Abel equation (cont.)

Au(x) + ‘[T\/lj((;—)tdt = e(x) + V1 + xf(x)

A(a) [ M Qi )(a) (e
b |- Q/LQZ Al b f

» The operator/matrix A is block-banded.

» Interlacing the coefficients like
[0, bo, @1, b1,...]T gives a tridiagonal
matrix.

» Non-constant coefficients also work,
but will increase bandwidth.

» If e and f are analytic, convergence is geometric.

401

451

50¢

0 10 20 30 40 50

nz = 338 g
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Fractional integral equations

Second-kind Abel equation (cont.)

Au(x) + Ijv%dt =e(x)+ V1 +xf(x)

A(a) [ M Qi )(a) (e
b |- Q/LQZ Al b f

» The operator/matrix A is block-banded.

100 L

10-5 L

» Interlacing the coefficients like
[0, bo, @1, b1,...]T gives a tridiagonal 10}
matrix.

» Non-constant coefficients also work, » . | .
but will increase bandwidth. S 5 0 15 20 25

» If e and f are analytic, convergence is geometric. \e
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FRACTIONAL DIFFERENTIAL
EQUATIONS (FDEs)




Fractional differential equations (FDEs)

Definitions (half derivative)

There are then two main definitions of the half-derivative:

Riemann—Liouville:

RL ~1/2 _ 172 1 d [ f(t)
D,“f(x):=D f(x) = .
a—_X (X) aQX ( ) (—dX '—t dt
Caputo:
f’(t)

C1/2 _ 1/2
D, “f(x) := Q. “Df(x
a—X ( ) a X ( ) /—n 5 X—t
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Fractional differential equations (FDEs)

Half-derivatives (RL) of Chebyshev and Legendre polynomials

Chebyshev and Legendre polynomials satisfy:3

91 L NPRPONCT)
I T,(x) = nU,_¢+(x) and I Pn(x) =2C. "7 (x)

Combining with previous results gives (derivation omitted):

0Py = grer (Ue) + U )
/

T Vi+x+n
RL ~1/2 n V3 3
D —— | (xX)=2(C
x [m]() (

Here the output spaces aren’t quite the same as the input, but it's OK because
2Ta(x) = Un(x) = Una(x) and (20 + 1)P,(x) = C¥?(x) - C¥2(x)!

SHere Cﬁ,A)(x) are Ultraspherical or “Gegenbauer” polynomials.
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Fractional differential equations (FDEs)

Fractional differential equation

Fractional differential equation:

Au(x) + _DY2u(x) = e(x) + 1 f(x)
1+ x
Ansatz - 1 =
u(x) =) anPn(x)+ bn Th(x)
(x) Z:,) (0 + = Z;

Leads to the (infinite dimensional) linear system

( 1S Do, )( a )_(e)
1/2 -
Dui AS, J\ b f

[o0]

e(x) = i enCP(x),  f(x) =) FoUn(x) 9

where
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Fractional differential equations (FDEs)

BOUNDARY CONDITIONS?!




Fractional differential equations (FDEs)

Boundary conditions

Au(x) + _D}u(x) = e(x) + f(x), xe[-1,1]

» We can’t apply half a boundary condition - so do we apply 0 or 1?
» Notice that the half-derivative has the non-trivial kernel

1

RL ~1/2

iD,/*———==0.
1 V1 +x

» Since the kernel is in our basis we need a boundary condition.

» But what conditions can we apply? Dirichlet at x = —1 — ill-posed

» To keep things simple, let’s consider u(1) =0 & |u| < oo g
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Fractional differential equations (FDEs)
Boundary conditions (cont.)

0 1
05
5 0
-0.5

0}
1
15

15}
2
25

20t

0 5 10 15 20 -3
-1 -0.5 0 0.5 1
nz =93
5/18

nickhale@sun.ac.za



Fractional differential equations (FDEs)
Boundary conditions (cont.)

nz = 225 i - ‘ = ?
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Fractional differential equations (FDEs)

Things | didn’t talk about

» Things | didn’t talk about:

» Higher-order derivatives

» Computing Legendre coefficients

» Solving the infinite-dimensional banded linear systems
» Caputo definition of fractional derivatives

» Existing methods?

» Extensions:
» Non-constant coefficients
» Non-linear problems
» Fractional partial differential equations
» Non-half integer order equations?
» Two-sided derivatives?
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Fractional differential equations (FDEs)

TL;DL

Moral of the story:

banded differential operator
+
banded conversion matrices

fast algorithm




THE END -
THANKS!
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