An ultraspherical spectral method for fractional integral and differential equations of half-integer order

SANUM 2016 Stellenbosch University 22nd March 2016

> Nick Hale Stellenbosch University

(Joint work with Sheehan Olver @ USYD)

An ultraspherical spectral method for fractional integral and differential equations of half-integer order

SANUM 2016 Stellenbosch University 22nd March 2016

> **Nick Hale Stellenbosch University**

(Joint work with Sheehan Olver @ USYD)

ULTRASPHERICAL SPECTRAL (US) METHOD

Ultraspherical spectral method (A very quick recap)

- Olver & Townsend, "A fast and well-conditioned spectral method" (2012)
- Two key ingredients: (banded differentiation & conversion operators)

$$\frac{d}{dx}T_n(x) = nU_{n-1}(x), \qquad T_n(x) = \frac{1}{2}(U_n(x) - U_{n-2}(x))$$

Natural factorization of the Chebyshev (coefficient) differentiation matrix:

$$D_{tau} = S^{-1} D_{US}$$

When solving ODEs:

$$u' + u = f \longrightarrow (D_{US} + S)\mathbf{u} = S\mathbf{f}$$

- Higher-order version uses similar relationships for Ultraspherical polynomials
- Advantages:
 - Fast (banded matrices)
 - ▶ Well-conditioned (ill-conditioning is in S⁻¹)

Ultraspherical spectral method (A very quick recap)

 $D_{tau} = S^{-1} D_{US}$:

Ultraspherical spectral method (A very quick recap)

To solve
$$u'(x) = f(x)$$
, $u(1) = 0$:

Ultraspherical spectral method (A very quick recap)

To solve
$$u'(x) + u(x) = f(x)$$
, $\int_{-1}^{1} u(x) dx = 0$:

FRACTIONAL CALCULUS: BACKGROUND / HISTORY

Fractional calculus: Background / History (300 hundred years in 30 seconds)

- History
 - ▶ L'Hôpital, Leibniz, Euler, Lacroix, Laplace, Fourier, Abel, Liouville, Riemann, ...1
 - "This $[d^{1/2}x/dx^{1/2}]$ is an apparent paradox from which, one day, useful consequences will be drawn." Leibniz, 1695
- Mathematical intuition

$$\frac{d^n}{dx^n}x^m = \frac{m!}{(m-n)!}x^{m-n} = \frac{\Gamma(m+1)}{\Gamma(m-n+1)}x^{m-n}, \quad (J^nf)(x) = \frac{1}{(n-1)!}\int_{-a}^{x}(x-t)^{n-1}f(t)dt$$

- Physical interpretation
 - ► Non-Gaussian random walks & heavy-tailed distributions. Memory processes.
- Application areas
 - Epidemiology
 - Finance
 - Physics
 - Porous media, ...

¹See Bertram Ross, The Development of Fractional Calculus 1695–1900, (1997) for an excellent discussion of the history of fractional calculus.

FRACTIONAL INTEGRAL EQUATIONS

Fractional integral equations Definition and some examples

Fractional integral definition²:

$${}_aQ^{\mu}_xf(x):=\frac{1}{\Gamma(\mu)}\int_a^x\frac{f(t)}{(x-t)^{1-\mu}}\,dt.$$

Fractional integral of monomials:

$${}_0Q^{\mu}_xx^n=\frac{n!}{\Gamma(n+\mu+1)}x^{n+\mu}.$$

Fractional integral of exponentials and trigonometric functions:

$$_{-\infty}Q_x^{\mu}e^{nx}=n^{-\mu}e^{nx}$$
 and $_{-\infty}Q_x^{\mu}\sin(nx)=n^{-\mu}\sin(nx-\mu\pi/2).$

Fractional integral of weighted Jacobi polynomials ("polyfractinomials"):

$$_{-1}Q_x^{\mu}\Big[(1+\diamond)^{\beta}P_n^{(lpha,eta)}\Big](x)=rac{B(eta+n+1,\mu)}{\Gamma(\mu)}(1+x)^{eta+\mu}P_n^{(lpha-\mu,eta+\mu)}(x).$$

²These are *left-sided* integrals. One can also define *right-sided* integrals.

Fractional integral equations Fractional integrals and conversion operators for Jacobi polynomials

Fractional integral of weighted Jacobi polynomials ("polyfractinomials"):

$$_{-1}Q_x^{\mu}\Big[(1+\diamond)^{\beta}\mathcal{P}_n^{(lpha,eta)}\Big](x)=rac{B(eta+n+1,\mu)}{\Gamma(\mu)}(1+x)^{eta+\mu}\mathcal{P}_n^{(lpha-\mu,eta+\mu)}(x).$$

The following conversions are also useful:

$$P_{n}^{(\alpha,\beta)}(x) = \frac{n+\alpha+\beta+1}{2n+\alpha+\beta+1}P_{n}^{(\alpha,\beta+1)}(x) + \frac{n+\alpha}{2n+\alpha+\beta+1}P_{n-1}^{(\alpha,\beta+1)}(x),$$

$$= \frac{n+\alpha+\beta+1}{2n+\alpha+\beta+1}P_{n}^{(\alpha+1,\beta)}(x) - \frac{n+\beta}{2n+\alpha+\beta+1}P_{n-1}^{(\alpha+1,\beta)}(x),$$

$$(1+x)P_{n}^{(\alpha,\beta+1)}(x) = \frac{2n+2}{2n+\alpha+\beta+2}P_{n+1}^{(\alpha,\beta)}(x) + \frac{2n+2\beta}{2n+\alpha+\beta+2}P_{n}^{(\alpha,\beta)}(x).$$

Combining these formulae leads to two important special case:

$${}_{-1}Q_x^{1/2}P_n(x) = \frac{\sqrt{1+x}}{\sqrt{\pi}(n+1/2)} \left(U_n(x) - U_{n-1}(x) \right)$$
$${}_{-1}Q_x^{1/2} \left[\sqrt{1+\diamond}U_n \right](x) = \frac{\sqrt{\pi}}{2} \left(P_{n+1}(x) + P_n(x) \right)$$

Therefore half-integration is a banded operator between these spaces.

Abel integral equation:

$$\lambda u(x) + \int_{-1}^{x} \frac{u(t)}{\sqrt{x-t}} dt = e(x) + \sqrt{1+x}f(x)$$

Ansatz

$$u(x) = \sum_{n=0}^{\infty} a_n P_n(x) + \sqrt{1+x} \sum_{n=0}^{\infty} b_n U_n(x)$$

Leads to the (infinite dimensional) linear system

$$\begin{pmatrix} \lambda I & Q_{cheb_2}^{1/2} \\ Q_{leg}^{1/2} & \lambda I \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{e} \\ \mathbf{f} \end{pmatrix}$$

where

$$e(x) = \sum_{n=0}^{\infty} e_n P_n(x), \qquad f(x) = \sum_{n=0}^{\infty} f_n U_n(x)$$

$$\lambda u(x) + \int_{-1}^{x} \frac{u(t)}{\sqrt{x-t}} dt = e(x) + \sqrt{1+x} f(x)$$
$$A\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} := \begin{pmatrix} \lambda I & Q_{cheb_2}^{1/2} \\ Q_{leg}^{1/2} & \lambda I \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{e} \\ \mathbf{f} \end{pmatrix}$$

- The operator/matrix A is block-banded.
- Interlacing the coefficients like [a₀, b₀, a₁, b₁,...]^T gives a tridiagonal matrix.
- Non-constant coefficients also work, but will increase bandwidth.
- ▶ If *e* and *f* are analytic, convergence is geometric.

$$\lambda u(x) + \int_{-1}^{x} \frac{u(t)}{\sqrt{x-t}} dt = e(x) + \sqrt{1+x} f(x)$$
$$A\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} := \begin{pmatrix} \lambda I & Q_{cheb_2}^{1/2} \\ Q_{leg}^{1/2} & \lambda I \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{e} \\ \mathbf{f} \end{pmatrix}$$

- ► The operator/matrix A is block-banded.
- ► Interlacing the coefficients like [a₀, b₀, a₁, b₁,...]^T gives a tridiagonal matrix.
- Non-constant coefficients also work, but will increase bandwidth.
- ▶ If *e* and *f* are analytic, convergence is geometric.

$$\lambda u(x) + \int_{-1}^{x} \frac{u(t)}{\sqrt{x-t}} dt = e(x) + \sqrt{1+x} f(x)$$
$$A\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} := \begin{pmatrix} \lambda I & Q_{cheb_2}^{1/2} \\ Q_{leg}^{1/2} & \lambda I \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{e} \\ \mathbf{f} \end{pmatrix}$$

- ► The operator/matrix A is block-banded.
- Interlacing the coefficients like [a₀, b₀, a₁, b₁,...]^T gives a tridiagonal matrix.
- Non-constant coefficients also work, but will increase bandwidth.
- ▶ If *e* and *f* are analytic, convergence is geometric.

$$\lambda u(x) + \int_{-1}^{x} \frac{u(t)}{\sqrt{x-t}} dt = e(x) + \sqrt{1+x} f(x)$$
$$A\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} := \begin{pmatrix} \lambda I & Q_{cheb_2}^{1/2} \\ Q_{leg}^{1/2} & \lambda I \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{e} \\ \mathbf{f} \end{pmatrix}$$

► The operator/matrix A is block-banded.

- Interlacing the coefficients like [a₀, b₀, a₁, b₁,...]^T gives a tridiagonal matrix.
- Non-constant coefficients also work, but will increase bandwidth.
- ► If *e* and *f* are analytic, convergence is geometric.

FRACTIONAL DIFFERENTIAL EQUATIONS (FDEs)

Fractional differential equations (FDEs) Definitions (half derivative)

There are then two main definitions of the half-derivative:

Riemann-Liouville:

$${}^{RL}_{a}D_{x}^{1/2}f(x) := D_{a}Q_{x}^{1/2}f(x) = \frac{1}{\sqrt{\pi}}\frac{d}{dx}\int_{a}^{x}\frac{f(t)}{\sqrt{x-t}}\,dt.$$

Caputo:

$${}^{C}_{a}D^{1/2}_{x}f(x) := {}_{a}Q^{1/2}_{x}Df(x) = \frac{1}{\sqrt{\pi}}\int_{a}^{x}\frac{f'(t)}{\sqrt{x-t}}\,dt.$$

Fractional differential equations (FDEs) Half-derivatives (RL) of Chebyshev and Legendre polynomials

Chebyshev and Legendre polynomials satisfy:³

$$rac{d}{dx}T_n(x) = nU_{n-1}(x)$$
 and $rac{d}{dx}P_n(x) = 2C_{n-1}^{(3/2)}(x)$

Combining with previous results gives (derivation omitted):

$${}^{RL}_{-1} D_x^{1/2} P_n(x) = \frac{1}{\sqrt{1+x}\sqrt{\pi}} \left(U_n(x) + U_{n-1}(x) \right)$$
$${}^{RL}_{-1} D_x^{1/2} \left[\frac{T_n}{\sqrt{1+\diamond}} \right](x) = \frac{\sqrt{3}}{2} \left(C_{n-1}^{(3/2)}(x) - C_{n-2}^{(3/2)}(x) \right)$$

Here the output spaces aren't quite the same as the input, but it's OK because $2T_n(x) = U_n(x) - U_{n-2}(x)$ and $(2n+1)P_n(x) = C_n^{(3/2)}(x) - C_{n-2}^{(3/2)}(x)!$

³Here $C_n^{(\lambda)}(x)$ are Ultraspherical or "Gegenbauer" polynomials.

Fractional differential equations (FDEs) Fractional differential equation

Fractional differential equation:

$$\lambda u(x) + {}_{-1}D_x^{1/2}u(x) = e(x) + \frac{1}{\sqrt{1+x}}f(x)$$
$$u(x) = \sum_{n=0}^{\infty} a_n P_n(x) + \frac{1}{\sqrt{1+x}}\sum_{n=0}^{\infty} b_n T_n(x)$$

Ansatz

Leads to the (infinite dimensional) linear system

$$\begin{pmatrix} \lambda S_1 & D_{cheb_1}^{1/2} \\ D_{leg}^{1/2} & \lambda S_2 \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{e} \\ \mathbf{f} \end{pmatrix}$$

where

$$e(x) = \sum_{n=0}^{\infty} e_n C_n^{(3/2)}(x), \qquad f(x) = \sum_{n=0}^{\infty} f_n U_n(x)$$

BOUNDARY CONDITIONS?!

Fractional differential equations (FDEs) Boundary conditions

$$\lambda u(x) + {}_{-1}D_x^{1/2}u(x) = e(x) + \frac{1}{\sqrt{1+x}}f(x), \qquad x \in [-1,1]$$

- We can't apply half a boundary condition so do we apply 0 or 1?
- Notice that the half-derivative has the non-trivial kernel

$${}^{RL}_{-1}D_x^{1/2}\frac{1}{\sqrt{1+x}}=0.$$

- ► Since the kernel is in our basis we need a boundary condition.
- But what conditions can we apply? Dirichlet at $x = -1 \rightarrow \text{ill-posed}$
- ► To keep things simple, let's consider $u(1) = 0 \& |u| < \infty$

Fractional differential equations (FDEs) Boundary conditions (cont.)

$$u(1) = \sum_{n=0}^{\infty} a_n P_n(1) + \frac{1}{\sqrt{2}} \sum_{n=0}^{\infty} b_n T_n(1) = 0$$

Page 15/18

Fractional differential equations (FDEs) Boundary conditions (cont.)

$$|u(-1)| < \infty \rightarrow \sum_{n=0}^{\infty} b_n T_n(1) = 0$$

Fractional differential equations (FDEs) Things I didn't talk about

- Things I didn't talk about:
 - Higher-order derivatives
 - Computing Legendre coefficients
 - Solving the infinite-dimensional banded linear systems
 - Caputo definition of fractional derivatives
 - Existing methods?
- Extensions:
 - Non-constant coefficients
 - Non-linear problems
 - Fractional partial differential equations
 - Non-half integer order equations?
 - Two-sided derivatives?

Moral of the story:

banded differential operator + banded conversion matrices = fast algorithm

THE END -THANKS!

