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Unwinding Function

3 Matrix Inverse Trigonometric &
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Multivalued (Inverse) Functions

log, acos, asin, acosh, asinh, . . .
Branch cuts help define connected domain where f
analytic.
Location of branch cuts is otherwise arbitrary.
Define principal values (distinguished branches),
including values on the branch cuts.
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Issues for Numerical Computation

Branch cuts and choices of branch must be consistent
between different inverse functions.
Choices must be clearly documented.
Precisely when do identities hold?

For matrices:

Existence.
Uniqueness of principal values.
Validity of identities: more than just the scalar case.
Computation.
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Quotes (1)

Corless et al. (2000):

Definitions of the elementary functions
are given in many textbooks and
mathematical tables . . .
often require a great deal of common
sense to interpret them, or . . .
are blatantly self-inconsistent
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Quotes (2)
Penfield (1981):

One cannot find in the mathematics or computer-science
literature a definitive value for the principal value of the
arcsin of 3.

Kahan (1987):

Principal Values have too often been
left ambiguous on the slits, causing
confusion and controversy . . .

Comparing various definitions, and
choosing among them, is a tedious
business prone to error.

Nick Higham Matrix Functions 7 / 52
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The Scalar Logarithm: Comm. ACM

J. R. Herndon (1961). Algorithm 48: Logarithm of a
complex number.

A. P. Relph (1962). Certification of Algorithm 48:
Logarithm of a complex number.

M. L. Johnson and W. Sangren, W. (1962). Remark on
Algorithm 48: Logarithm of a complex number.

D. S. Collens (1964). Remark on remarks on
Algorithm 48: Logarithm of a complex number.

D. S. Collens (1964). Algorithm 243: Logarithm of a
complex number: Rewrite of Algorithm 48.
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Logarithm of Product, Complex Case

Goes on to say must take appropriate branch for each
occurrence of log.
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NIST Handbook (Olver et al. 2010)

Arcsin, Arccos are “general values” of inverse sine, inverse
cosine.
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HP-15C Handbook (1982 and 1986)

acos formula “quite wrong” (Kahan, 1987)
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MATLAB and Symbolic Math Toolbox

>> z = -4; acosh(z), double(acosh(sym(z)))
ans =

2.0634e+00 + 3.1416e+00i
ans =
-2.0634e+00 + 3.1416e+00i

Nick Higham Matrix Functions 13 / 52
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Identities in Complex Variables

(1− z)1/2(1 + z)1/2 = (1− z2)1/2 for all z ,

(z − 1)1/2(z + 1)1/2 = (z2 − 1)1/2 for arg z ∈ (−π/2, π/2] .

Need to be very careful in simplifying expressions involving
multivalued functions.

When is log ez = z?
When is acos(cos z) = z?
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Logarithm and Square Root

X is a logarithm of A ∈ Cn×n if eX = A. Write X = log A.

Branch cut (−∞,0].

Principal logarithm, log A: Imλ(log A) ∈ (−π, π].

Principal square root: X 2 = A and Reλ(X ) ≥ 0,
(−r)1/2 = r 1/2i for r ≥ 0.

Nick Higham Matrix Functions 16 / 52
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The Lambert W Function

Wk(a), k ∈ Z: solutions of wew = a.

−6π −4π −2π 0 2π 4π 6π

−6π

−4π

−2π

0

2π

4π

6π

W
0

W
1

W
2

W
−1

W
−2

Fasi, H & Iannazzo:
An Algorithm for the
Matrix Lambert W
Function, SIMAX
(2015).
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Unwinding Number

Definition

U(z) = z − log ez

2πi
.

Note:
z = log ez + 2π iU(z).

Corless, Hare & Jeffrey (1996);
Apostol (1974): special case.

ISO standard typesetting!

Nick Higham Matrix Functions 18 / 52
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Unwinding number is an integer

U(z) = z − log ez

2πi
=

⌈
Im z − π

2π

⌉
.

When is log(ez) = z?
U(z) = 0 iff Im z ∈ (−π, π].

Riemann surface of
logarithm

Nick Higham Matrix Functions 19 / 52
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Matrix Unwinding Function
H & Aprahamian (2014):

U(A) = A− log eA

2πi
, A ∈ Cn×n.

Jordan form
For Z−1AZ = diag(Jk(λk)),

U(A) = Zdiag(U(λk)Imk )Z
−1.

U(A) is diagonalizable.
U(A) has integer ei’vals.
U(A) is pure imaginary if A is real.
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Logarithm of Matrix Product

Theorem (Aprahamian & H, 2014)

Let A,B ∈ Cn×n be nonsingular and AB = BA. Then

log(AB) = log A + log B − 2πiU(log A + log B).

Nick Higham Matrix Functions 21 / 52
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Power of a Product

Theorem

Let A,B ∈ Cn×n be nonsingular and AB = BA. For α ∈ C,

(AB)α = AαBαe−2παiU(log A+log B).

Proof.

(AB)α = eα log(AB)

= eα(log A+log B−2πiU(log A+log B))

= AαBαe−2απiU(log A+log B).

Nick Higham Matrix Functions 22 / 52
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The Square Root Relation Explained

(1− z2)1/2 = (1− z)1/2(1 + z)1/2 (−1)U(log(1−z)+log(1+z)) .

Wlog, Im z ≥ 0. Then

0 ≤arg(1 + z) ≤ π,

−π ≤arg(1− z) ≤ 0,

so

Im
[
log(1− z) + log(1 + z)

]
∈ (−π, π]

⇒ U
[
log(1− z) + log(1 + z)

]
= 0.

This is not true for z − 1 and z + 1!
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Early Definition

W. H. Metzler, On the Roots of Matrices (1892):

“Proves” sin(asinA) = A.

Nick Higham Matrix Functions 25 / 52
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Application (1)

American Journal of Agricultural Economics, 1977
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Application (2)

In a 1954 paper on the energy equation of a
free-electron model :

Nick Higham Matrix Functions 27 / 52



Multivalued trouble Logarithm Inverse Trig/Hyp Algorithms

Toolbox of Matrix Functions

d2y
dt2 + Ay = 0, y(0) = y0, y ′(0) = y ′0

has solution

y(t) = cos(
√

At)y0 +
(√

A
)−1 sin(

√
At)y ′0.

But [
y ′

y

]
= exp

([
0 −tA

t In 0

])[
y ′0
y0

]
.

In software want to be able evaluate interesting f at
matrix args as well as scalar args.
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Existing Software

MATLAB has built-in expm, logm, sqrtm, funm.
We have written cosm, sinm, signm, powerm,
lambertwm, unwindm, . . .
Julia has expm, logm, sqrtm.
NAG Library has 42+ f (A) codes.

H & Deadman, A Catalogue of Software for Matrix
Functions (2016).
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Definitions

cos X =
eiX + e−iX

2
, sin X =

eiX − e−iX

2i
,

cosh X = cos iX , sinh X = −i sin iX .

Concentrate on inverse cosine.
Analogous results for inverse sine, inverse hyperbolic
cosine, inverse hyperbolic sine.

Joint work with Mary Aprahamian.
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Inverse Cosine

A = cos X =
eiX + e−iX

2
,

implies
(eiX − A)2 = A2 − I

or
eiX = A +

√
A2 − I.

But not all square roots give a solution!

Theorem

cos X = A has a solution if and only if A2 − I has a square
root. All solutions are of the form X = −i Log(A +

√
A2 − I)

for some square root and logarithm.

Nick Higham Matrix Functions 31 / 52
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Problems

Pólya & Szegö, Problems and Theorems in Analysis II
(1998): do

sin X =

[
1 1
0 1

]
, sin X =

[
−1 −1
0 −1

]
have a solution?

Putnam Problem 1996-B4: does

sin X =

[
1 1996
0 1

]
have a solution?
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Principal Inverse Cosine

acos

−1 1 0 π

Ω1 Ω2

acosΩ1

acosΩ2
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Existence and Uniqueness

Theorem

If A ∈ Cn×n has no ei’vals ±1 there is a unique principal
inverse cosine acosA, and it is a primary matrix function.

Nick Higham Matrix Functions 34 / 52
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Log Formula

Lemma

If A ∈ Cn×n has no ei’vals ±1,

acosA = −i log(A + i(I − A2)1/2)

= −2i log

((
I + A

2

)1/2

+ i
(

I − A
2

)1/2
)
.

MATLAB docs define acos by first expression for scalars.
Not obvious that RHS satisfies the conditions for acos!

Is the lemma an immediate consequence of the scalar
case?

Nick Higham Matrix Functions 35 / 52
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When Scalar Identity Implies Matrix Identity

Theorem (Horn & Johnson, 1991)

If f ∈ Cn−1 then f (A) = 0 for all A ∈ Cn×n iff f (z) = 0 for all
z ∈ C.

cos2 A + sin2 A = I
√

Not applicable for identities involving branch cuts.
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Principal Inverse Coshine

acosh

−1 1 0

iπ

Ω1 Ω3

acoshΩ1

acoshΩ3

−iπ
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acos and acosh

Abramowitz & Stegun: acosh z = ±i acos z .

Theorem

If A ∈ Cn×n has no ei’val −1 or on (0,1] then

acoshA = i sign(−iA) acosA.

Sign is based on the scalar map

z → sign(Re z) = ±1,
sign(0) = 1,
sign(y i) = sign(y) for 0 6= y ∈ R.

Nick Higham Matrix Functions 38 / 52
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Roundtrip Relations

By definition, cos(acosA) = A.

What about acos(cos A) = A ?

Theorem

If A ∈ Cn×n has no ei’val with real part kπ, k ∈ Z, then

acos(cos A) =
(
A− 2πU(iA)

)
sign

(
A− 2πU(iA)

)
.

Corollary

acos(cosA) = A iff every e’val of A has real part in (0, π).

Nick Higham Matrix Functions 39 / 52
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GNU Octave

thfm (“Trigonometric/hyperbolic functions of square
matrix”)

Does not return the principal value of acosh! Uses

acoshA = log(A + (A2 − I)1/2)

instead of

acoshA = log(A + (A− I)1/2(A + I)1/2).

Nick Higham Matrix Functions 41 / 52
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Padé Approximation

Rational rkm(x) = pkm(x)/qkm(x) is a
[k ,m] Padé approximant to f if pkm and
qkm are polys of degree at most k and m
and

f (x)− rkm(x) = O(xk+m+1).

Generally more efficient than
truncated Taylor series.
Possible representations:

Ratio of polys.
Continued fraction.
Partial fraction.

Henri Padé
1863–1953
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Padé Approximation for acos

acos(I − A) = (2A)1/2
∞∑

k=0

(2k
k

)
8k(2k + 1)

Ak , ρ(A) ≤ 2.

Use Padé approximants of f (x) = (2x)−1/2 acos(1− x).
Backward error hm(A) defined by

(2A)1/2rm(A) = acos
(
I − A + hm(A)

)
satisfies

‖hm(A)‖
‖A‖

≤
∞∑
`=0

|c`|‖A‖2m+`+1,

In fact, replace ‖A‖ by αp(A), where, with p(p−1) ≤ 2m+1,

αp(A) = max
(
‖Ap‖1/p, ‖Ap+1‖1/(p+1)) ≤ ‖A‖.
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Reducing the Argument

Use acos X = 2 acos
(
(1

2(I + X ))1/2
)

to get argument near I.

Lemma

For any X0 ∈ Cn×n, the sequence defined by

Xk+1 =

(
I + Xk

2

)1/2

satisfies limk→∞ Xk = I.

Not trivial to prove!
Our proof: derive scalar result, then apply general
result of Iannazzo (2007).
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Choice of Padé Degree

Take enough square roots to get close to I.

Then balance cost of extra square roots with cost of
evaluating rm.

Use fact that

(I − Xk+1)(I + Xk+1) = I − X 2
k+1 =

I − Xk

2

implies ‖I − Xk+1‖ ≈ ‖I − Xk‖/4.
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Other Features

Initial Schur decomposition.

Compute square roots using Björck–Hammarling
(1983) recurrence.

Use estimates of ‖Ak‖1 (alg of H & Tisseur (2000)).

Get the other functions from

asinA = (π/2)I − acosA,
asinhA = i asin(−iA) = i

(
(π/2)I − acos(−iA)

)
,

acoshA = i sign(−iA) acosA.
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How to Test an Algorithm for acosA?

Could check identities

Roundtrip relations.
acosA + asinA = (π/2)I.
sin(acosA) = (I − A2)1/2.

Deadman & H (2016) give relevant “fudge factors”.

Here, compute relative errors

‖X − X̂‖1

‖X‖1
,

where X computed at high precision using
A = VDV−1 ⇒ f (A) = Vf (D)V−1 (AdvanPix Toolbox).
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Comparison

Schur–Padé alg (Schur decomposition, square roots,
Padé approximant).

The formula

acosA = −i log(A + i(I − A2)1/2)

computed with MATLAB logm and sqrtm, using a
single Schur decomposition. GNU Octave uses this
formula.
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Experiment, n = 10
For acos, compare new alg with log formula

2 4 6 8 10 12 14 16 18 20

10-15

10-10

10-5

100

Schur-Padé algorithm

Log formula
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The Problem with the Log Formulas

acosA = −i log(A + i(I − A2)1/2)

A =

[
0 b
−b 0

]
, b = 1000, Λ(A) = {±1000i}.

‖acosA− X̂‖1

‖acosA‖1
≈

{
1.98× 10−9 log formula,
3.68× 10−16 new Alg.

E’vals of A + i(I − A2)1/2 ≈ {5× 10−5 i,2000i}.

Relative 1-norm condition number of acosA is 0.83.
Instability of log formula.
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Conclusions

First thorough treatment of inverse trigonometric and
inverse hyperbolic matrix functions.

Existence and uniqueness results.
Various scalar identities extended to matrix case.
New roundtrip identities (new even in scalar case).
New Schur–Padé algs—numerically stable.
MATLAB codes on GitHub:
https://github.com/higham/matrix-inv-trig-hyp

Mary Aprahamian & H (2016), Matrix Inverse
Trigonometric and Inverse Hyperbolic Functions:
Theory and Algorithms, MIMS EPrint.
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Future Directions

Theory and algs for non-primary functions, perhaps
linked to an f (A(t)) application.
Better understanding of conditioning of f (A).
Matrix argument reduction.
f (A)b problem.

Manchester
NLA group
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