
Review of previous work Mathematical model Conservation laws and conserved vectors Classical wake Wake of a self-propelled body Mathematical relationship between the solutions Conclusions

A unified theory for turbulent wake flows
described by eddy viscosity

A J Hutchinson

University of the Witwatersrand

March 23, 2016

1 / 23



Review of previous work Mathematical model Conservation laws and conserved vectors Classical wake Wake of a self-propelled body Mathematical relationship between the solutions Conclusions

Outline

1 Review of previous work

2 Mathematical model

3 Conservation laws and conserved vectors

4 Classical wake

5 Wake of a self-propelled body

6 Mathematical relationship between the solutions

7 Conclusions

2 / 23



Review of previous work Mathematical model Conservation laws and conserved vectors Classical wake Wake of a self-propelled body Mathematical relationship between the solutions Conclusions

Review of previous work

Classical laminar wake-Goldstein.

Self-propelled laminar wake-Birkhoff and Zorantello.

Two-fluid laminar wake-Herzynski, Weidman and Burde.

Turbulent planar wake-Tennekes and Lumley.

Similarity solutions are obtained when the eddy viscosity is a
power law of the distance along the wake and when the
kinematic viscosity is neglected.
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Mathematical model

Flow = mean motion + eddying motion.

Implement averaging techniques.

Time averages of fluctuations are zero but the time
averages of products of fluctuations are non-zero.

Non-zero terms are expressed in terms of Reynolds
stresses.

Eddy viscosity closure model is implemented.

Boundary layer theory is applied.

Dimensionless equations are expressed in terms of the
velocity deficit: vx = 1− w(x, y).
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Mathematical model
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Figure: Two-dimensional wake behind a slender symmetric body
aligned with a uniform mainstream flow. The origin of the coordinate
system is at the trailing edge of the object.
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Mathematical model
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Figure: Two-dimensional wake behind a slender symmetric
self-propelled body. The mean velocity deficit is negative in a
neighbourhood of the x-axis.

6 / 23



Review of previous work Mathematical model Conservation laws and conserved vectors Classical wake Wake of a self-propelled body Mathematical relationship between the solutions Conclusions

Mathematical model

We assume that we are sufficiently far downstream such that
powers and products can be neglected. The governing
equations are

−∂w
∂x

+
∂vy

∂y
= 0, (1)

∂w
∂x

=
∂

∂y

(
E (x, y)

∂w
∂y

)
, (2)

where the dimensionless effective viscosity E is

E (x, y) =
ν

ν + νT0

+
νT

ν + νT0

. (3)

The boundary conditions for x ≥ 0 are

w(x,±∞) = 0,
∂w
∂y

(x,±∞) = 0, (4)

∂w
∂y

(x, 0) = 0, vy(x, 0) = 0. (5)
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Mathematical model

In terms of a stream function we have
∂2ψ

∂x∂y
=

∂

∂y

(
E (x, y)

∂2ψ

∂y2

)
. (6)

The boundary conditions, for x ≥ 0, are

∂ψ

∂y
(x,±∞) = 0,

∂2ψ

∂y2 (x,±∞) = 0, (7)

∂ψ

∂x
(x, 0) = 0,

∂2ψ

∂y2 (x, 0) = 0. (8)

The conserved quantities are∫ ∞

−∞

∂ψ

∂y
dy = D, (9)

for the classical wake and for the wake of a self-propelled body∫ ∞

−∞
y2 ∂ψ

∂y
dy = K. (10)
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Conserved vectors

Conservation laws are of the form

D1T1 + D2T2
∣∣∣
PDE

= 0. (11)

We used the multiplier method in order to derive the
conserved vectors.

ΛjFj(x, ψ, ψ(1), ..., ψ(k)) = DjT j. (12)

In terms of the stream function we obtained

T1 = y2ψy, T2 =
(
−y2ψyy + 2yψy − 2ψ

)
E(x). (13)

T1 = yψy, T2 = −yE(x)ψyy + E(x)ψy, (14)

T1 = ψy, T2 = −E (x, y)ψyy. (15)
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Conserved vectors

And for the velocity components we had

T1 =

(
y2 − 2

∫ x

0
E(α)dα

)
w,

T2 = −y2E(x)wy + 2yE(x)w + 2
∫ x

0
E(α)dαv. (16)

T1 = yw, T2 = −yE(x)wy + E(x)w. (17)

T1 = w, T2 = −E (x, y)wy. (18)

T1 = −w, T2 = v. (19)
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Classical wake

The elementary conserved vector

T1 = ψy, T2 = −E (x, y)ψyy, (20)

generates the conserved quantity.
The Lie point symmetry is

X = ξ1(x)
∂

∂x
+ ξ2(x, y)

∂

∂y
+ η(x)

∂

∂ψ
, (21)

provided E(x, y) satisfies

E(x, y)
∂2ξ2

∂y2 −
∂ξ2

∂x
= 0, (22)

ξ1(x)
∂E
∂x

+ ξ2(x, y)
∂E
∂y

=

(
2

∂ξ2

∂y
− dξ1

dx

)
E(x, y). (23)
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Classical wake

We consider E = E(x) only.

The Lie point symmetry becomes

X =
2
∫ x

0 E(x′)dx′

E(x)
∂

∂x
+ y

∂

∂y
. (24)

The invariant solution is

ψ(x, y) = F(ξ), (25)

where
ξ =

y
(2
∫ x

0 E(x′)dx′)1/2
, (26)

and F(ξ) satisfies

d3F
dξ3 + ξ

d2F
dξ2 +

dF
dξ

= 0, (27)
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Classical wake

subject to

dF
dξ

(±∞) = 0,
d2F
dξ2 (±∞) = 0, (28)

d2F
dξ2 (0) = 0, F(0) = 0. (29)

The solution is

ψ(x, y) =
D√
2π

∫ ξ

0
exp

[
− ξ∗2

2

]
dξ∗. (30)
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Wake of a self-propelled body

The conserved vector is

T1 = y2ψy, T2 =
(
−y2ψyy + 2yψy − 2ψ

)
E(x). (31)

Lie point symmetry associated with conserved vector

X =
1

E(x)

[
2
∫ x

0
E(α)dα

]
∂

∂x
+ y

∂

∂y
− 2ψ

∂

∂ψ
. (32)

Invariant solution

ψ(x, y) =
F(ξ)

2
∫ x

0 E(α)dα
, (33)

where
ξ(x, y) =

y(
2
∫ x

0 E(α)dα
)1/2 , (34)

and F(ξ) satisfies

d3F
dξ3 + ξ

d2F
dξ2 + 3

dF
dξ

= 0, (35)
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Wake of a self-propelled body

subject to

dF
dξ

(±∞) = 0,
d2F
dξ2 (±∞) = 0, (36)

F(0) = 0,
d2F
dξ2 (0) = 0. (37)

The solution is

ψ(x, y) = − K
2
√

2π

1[
2
∫ x

0 E(α)dα
] ξ exp

[
− ξ2

2

]
. (38)
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Discovery of the ’odd’ wake

The conserved vector

T1 = yψy, T2 = −yE(x)ψyy + E(x)ψy, (39)

led to the discovery of the odd wake! Which we called the
combination wake...

Lie point symmetry:

X =
1

E(x)

[
2
∫ x

0
E(α)dα

]
∂

∂x
+ y

∂

∂y
− ψ

∂

∂ψ
. (40)

Invariant solution:

ψ(x, y) =
F(ξ)(

2
∫ x

0 E(α)dα
)1/2 , (41)

where
ξ(x, y) =

y(
2
∫ x

0 E(α)dα
)1/2 , (42)
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Discovery of the ’odd’ wake

and F(ξ) satisfies

d3F
dξ3 + ξ

d2F
dξ2 + 2

dF
dξ

= 0, (43)

subject to
dF
dξ

(±∞) = 0,
d2F
dξ2 (±∞) = 0, (44)

F(0) = 0. (45)
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Discovery of the ’odd’ wake

The solution is

ψ(x, y) =
S

2
√

π
(∫ x

0 E(α)dα
)1/2

[
1− exp

(
− ξ2

2

)]
. (46)

Used similar physical arguments to obtain the constants in
the Lie point symmetry.

The same boundary conditions are satisfied at ±∞.

However, the velocity deficit is not a max on the axis of the
wake- in fact it is zero.
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The combination wake
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Figure: Two-dimensional combination wake behind a slender
symmetric body. 19 / 23
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Summary

Classical wake

ψ(x, y) =
D√
2π

∫ ξ

0
exp

[
− ξ∗2

2

]
dξ∗ (47)

Combination wake

ψ(x, y) =
S√
2π

1[
2
∫ x

0 E(α)dα
]1/2

(
1− exp

[
− ξ2

2

])
(48)

Wake of a self-propelled body

ψ(x, y) = − K
2
√

2π

1[
2
∫ x

0 E(α)dα
] ξ exp

[
− ξ2

2

]
(49)
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Mathematical link

Surprisingly all these solutions are linked!

For E = E(x) the governing equation is linear:

∂2ψ

∂x∂y
= E(x)

∂3ψ

∂y3 . (50)

Therefore, ψn where

ψn(x, y) =
∂nψ

∂yn , n ≥ 1, (51)

are also solutions! But they don’t necessarily satisfy the
BCs. We have

∂2ψn

∂y2 (x,±∞) = 0,
∂ψn

∂y
(x,±∞) = 0, (52)

∂ψn

∂x
(x, 0) = 0,

∂2ψn

∂y2 (x, 0) = 0, n even. (53)
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Mathematical link

We let
ψ(x, y) = α1ψn(x, y) + α2(x). (54)

For n = 1 we can recover the solution for the combination
wake.

For n = 2 we can recover the solution for the wake of a
self-propelled body.

The combination wake provided the link between all the
solutions!
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Conclusions

Conservation laws lead to the discovery of the
combination wake.

All wake problems are mathematically linked which
highlights the importance of using modelling with the
symmetries.
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