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Outline

Extract from Digital Library of Mathematical Functions

§18.32 OP’s with Respect to Freud Weights
A Freud weight is a weight function of the form

18.32.1 w(x) = exp(−Q(x)), −∞ < x <∞

where Q(x) is real, even, non-negative, and continuously
differentiable. Of special interest are the cases Q(x) = x2m,
m = 1, 2, . . . . No explicit expressions for the corresponding
OP’s are available. However, for asymptotic approximations in
terms of elementary functions for the OP’s, and also for their largest
zeros, see Levin and Lubinsky [2001] and Nevai [1986]. For a uniform
asymptotic expansion in terms of Airy functions for the OP’s in the
case x4 see Bo and Wong [1999].
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Semi-classical orthogonal polynomials

Orthogonal polynomial sequences

Given {µn} ∈ R, we define the moment functional L : xn → µn on
the linear space of polynomials P. Assume µ0 = L(1) = 1. The inner
product 〈·, ·〉 for the functional L is given by

〈Pm(x),Pn(x)〉 = L (Pm(x)Pn(x))

Monic polynomials {Pn(x)}∞n=0 orthogonal w.r.t. a moment
functional L related to an absolutely continuous Borel measure µ on
R; dµ(x) = w(x) dx ;w(x) > 0 :

L (Pm(x) Pn(x)) = 〈Pm,Pn〉 =

∫
R
Pm(x) Pn(x) dµ(x) = hn δmn,

where the normalization constant hn > 0 and δmn is the Kronecker
delta.
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Semi-classical orthogonal polynomials

Monic orthogonal polynomials Pn(x) satisfy

P−1(x) = 0, P0(x) = 1,

Pn+1(x) = (x − αn) Pn(x)− βn Pn−1(x),

αn =
〈xPn,Pn〉
〈Pn,Pn〉

∈ R; βn =
〈Pn,Pn〉
〈Pn−1,Pn−1〉

> 0, β0 = 1, n ∈ N0,

and the constant:

hn = 〈Pn,Pn〉 = ‖Pn‖2 =
n∏

j=1

βj .

To construct Pn(x) for L :

Pn(x) =
1

∆n−1

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn
µ1 µ2 · · · µn+1
...

...
. . .

...
µn−1 µn · · · µ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
, ∆n := det(µi+j)

n
i ,j=0 > 0.
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Semi-classical orthogonal polynomials

Classical orthogonal polynomials

Classical weights satisfy Pearson’s equation

d

dx
(σw) = τw , (2.1)

with deg(σ) ≤ 2 and deg(τ) = 1, and bcs : σ(x) w(x) = 0 for x = a and x = b.

pn w(x) σ(x) τ(x) interval

Hermite exp(−x2) 1 −2x (−∞,∞)
Laguerre xαexp(−x), α > −1 x 1 + α− x (0,∞)

Jacobi (1− x)α(1 + x)β 1− x2 β − α− (2 + α + β)x [−1, 1]

pn’s are solutions of Lpn = λnpn where L is a second order differential operator
(Sturm-Liouville) [Bochner, 1929]

Structural relation:

σ(x) (pn(x))
′

=
n−r+1∑
j=n−1

An,jpj(x), r = deg(σ) (2.2)

(2.2) together with xpn = an+1pn+1 + bnpn + anpn−1, yields a first order recurrence
equation for the recurrence coefficients an and bn, which can be solved explicitly.
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Semi-classical orthogonal polynomials

Semi-classical orthogonal polynomials

Semi-classical weights satisfy Pearson’s equation (2.1) with deg(σ) > 2 or
deg(τ) > 1. [Hendriksen, van Rossum, 1977]

weight w(x) parameters σ(x) τ(x)

- exp(−x4) - 1 −4x3

Airy exp(− 1
3
x3 + tx) t > 0 1 t − x2

Semi-classical Laguerre xλexp(−x2 + tx) λ > −1 x 1 + λ + tx − 2x2

Freud exp(− 1
4
x4 − tx2) x, t ∈ R 1 −2tx − x3

Generalized Freud |x|2λ+1exp(−x4 + tx2) λ > 0, x, t ∈ R x 2λ + 2− 2tx2 − x4

pn does not satisfy Sturm-Liouville differential equation.

Structural relation

σ(x)p
′
n(x) =

n−r+1∑
j=n−s

An,jpj(x),

{
r = deg(σ),

s = max{deg(σ)− 1, deg(τ)}
. (2.3)

(2.3) and xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x), n ≥ 0, yield second or
higher order (non-linear) equations for the recurrence coefficients an and bn.

Example: w(x) = exp(−x4) on R [Nevai, 1983]: bn = 0 (symmetry);

4a2
n

(
a2
n + a2

n + a2
n

)
= n, n ≥ 2, a0 = 1, a2

1 =
Γ( 3

4
)

Γ( 1
4
)
, where Γ(z) =

∫ ∞
0

tz−1e−tdt.
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The link to Painlevé equations

The link to Painlevé equations

Some history: The first non-linear recurrence equation – Shohat(1930’s) and
Laguerre, Freud (late 70’s) and very recently recognized as discrete Painlevé
equations by Fokas, Its, and Kitaev. Work by Magnus (relation between
discrete and continuous Painlevé equations), Witte, Clarkson, Van Assche,
Nijhoff, Spicer, Chen and Ismail extended theory with some more examples.

Some Discrete Painlevé eqns:

(d-PI) xn+1 + xn + xn−1 =
zn + γ(−1)n

xn
+ σ

(d-PII) xn+1 + xn−1 =
xnzn + γ

1− x2
n

(d-PIV) (xn+1 + xn) (xn + xn−1) =

(
x2
n − κ2

) (
x2
n − µ2

)
(xn + zn)2 − γ2

The continuous fourth Painlevé equation (PIV)

d2q

dz2 =
1

2q

(
dq

dz

)2

+
3

2
q3 + 4zq2 + 2(z2 − A)q +

B

q
, (3.1)

where A and B are constants, which are expressed in terms of parabolic cylinder
(Hermite-Weber) functions.
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The link to Painlevé equations

Semi-classical Laguerre

Theorem (LB-WVA, 2012)

The coefficients αn(t) and βn(t) in the three-term recurrence

L
(ν)
n+1(x ; t) = (x − αn)L(ν)

n (x ; t)− βnL(ν)
n−1(x ; t);

associated with the the semi-classical Laguerre wν(x) = xν exp(−x2 + tx),
ν > −1, x ∈ R+ are:

(2αn − t) (2αn−1 − t) =
(2βn − n) (2βn − n − ν)

βn
,

2βn + 2βn+1 − αn(2αn − t) = 2n + 1 + ν.

For explicit formulations of αn and βn, see [CJ, 2014].
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The link to Painlevé equations

Discrete Painlevé and more semi-classical weights

Question: What semi-classical weights are related to discrete Painlevé
equations? Which discrete Painlevé equations do we obtain?

w(x) = |x |% exp(−x4), % > −1 on R is related to (d-PI). [Magnus,
1986].

w(x) = xα exp(−x2), α > −1 on R+ is related to (d-PIV)
[Sonin-type].

w(x ; t) = xα exp(−x2 + tx), α > −1 on R+ is related to (PIV)
[GF-WVA-LZ, 2011].

Wλ(x) = |x |2λ+1 exp(−x4 + tx2), λ > −1, t, x ∈ R related to
(d-PI) and continuous (PIV) [LB-WVA, 2011, GF-WVA-LZ, 2012].
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The link to Painlevé equations

The recurrence coefficient related to Painlevé IV
Theorem. (LB-WVA, 2011; GF-WVA-LZ, 2012)

The recurrence coefficients βn(t;λ) in the three term recurrence

xSn(x ; t) = Sn+1(x ; t) + βn(t;λ)Sn−1(x ; t)

associated with the weight Wλ satisfy the equation

d2βn

dt2 =
1

2βn

(
dβn
dt

)2

+ 3
2β

3
n − tβ2

n + ( 1
8 t

2 − 1
2An)βn +

Bn

16βn
, (3.2)

where the parameters An and Bn are given by

A2n = −2λ− n − 1, A2n+1 = λ− n,
B2n = −2n2, B2n+1 = −2(λ+ n + 1)2.

Further βn(t) satisfies the non-linear difference equation

βn+1 + βn + βn−1 = 1
2
t +

2n + (2λ+ 1)[1− (−1)n]

8βn
, –discrete PI (dPI).

Remark: (3.2) ≡ PIV via the transformation βn(t;λ) = 1
2
w(z), with z = − 1

2
t. Hence

β2n(t;λ) = 1
2
w
(
z ;−2λ− n − 1,−2n2); β2n+1(t;λ) = 1

2
w
(
z ;λ− n,−2(λ+ n + 1)2),

with z = − 1
2
t, where w(z ;A,B) satisfies PIV ( 3.1).
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The link to Painlevé equations

Our interest:
What more can be said about properties of polynomials orthogonal with

respect to W (x) = |x |2λ+1 exp
(
−x4 + tx2

)
?
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Generalized Freud polynomials

Generalized Freud polynomials

Let {Sn(x)}∞n=0 be monic OPS related to W (x) = |x |2λ+1 exp
(
−x4 + tx2

)
.

Three-term recurrence:

xSn(x) = Sn+1(x) + βn(t;λ)Sn−1(x);

where S−1(x) = 0, S0(x) = 1.

Symmetric property: Sn(−x) = (−1)nSn(x), ∀x ∈ R.
The semi-classical Laguerre polynomials Ln(wν ; x) related to
wν(x) = xν exp(−x2 + tx), α > −1, x ∈ R+ via quadratic transformation
generates Sn(wλ; x) with Wλ(x) = |x |2λ+1 exp(−x4 + tx2), λ > −1 on R (Chihara,
1978; GF-WVA-LZ, 2012)

S2n(x ;Wγ) = Ln

(
w γ−1

2
; x2
)

; xi,n
(
w γ−1

2

)
= [ei,2n(Wγ)]2 ,

S2n+1(x ;Wγ) = xLn

(
w γ+1

2
; x2
)

; xi,n
(
w γ+1

2

)
= [ei,2n+1(Wγ)]2 .

Basic symmetrization principle∫ c2

0
Pm(x)Pn(x)w(x) dx = Kn δmn ⇒

∫ c

−c
Sm(x) Sn(x) |x| w(x2) dx = Kn δmn, where ρ(x) = |x |w(x2)

is a symmetric: ρ(x) = ρ(−x) for all x ∈ R; i.e., µ2j+1 = 0⇔ bn = 0.
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Properties of generalized Freud polynomials Moments

Properties of generalized Freud polynomials
Moments of the generalized Freud weight [CJK, 2016]

The first moment, µ0(t;λ), for generalized Freud weight in terms of the integral
representation of a parabolic cylinder (Hermite-Weber) function Dv (ξ):

µ0(t;λ) =

∫ ∞
−∞
|x |2λ+1 exp

(
−x4 + tx2

)
dx

= 2

∫ ∞
0

x2λ+1 exp
(
−x4 + tx2

)
dx

=

∫ ∞
0

yλ exp
(
−y2 + ty

)
dy

=
Γ(λ+ 1)

2(λ+1)/2
exp

(
1
8 t

2
)
D−λ−1

(
− 1

2

√
2 t
)
.

since the parabolic cylinder function Dv (ξ) has the integral representation

Dv (ξ) =
exp(− 1

4ξ
2)

Γ(−v)

∫ ∞
0

s−v−1 exp
(
− 1

2 s
2 − ξs

)
ds, <(ν) < 0.
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Properties of generalized Freud polynomials Moments

The even moments are

µ2n(t;λ) =

∫ ∞
−∞

x2n |x |2λ+1 exp
(
−x4 + tx2

)
dx

=
dn

dtn

(∫ ∞
−∞
|x |2λ+1 exp

(
−x4 + tx2

)
dx

)
,

=
dn

dtn
µ0(t;λ), n = 1, 2, . . .

whilst the odd ones are

µ2n+1(t;λ) =

∫ ∞
−∞

x2n+1 |x |2λ+1 exp
(
−x4 + tx2

)
dx = 0, n = 1, 2, . . .

since the integrand is odd.
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Properties of generalized Freud polynomials Differential-difference equation

Differential-difference equation

Theorem (CJK, 2016)

For the generalized Freud weight Wλ(x) = |x |2λ+1 exp
(
−x4 + tx2

)
, x ∈ R, the

monic orthogonal polynomials Sn(x ; t) satisfy the differential-difference equation

x
dSn
dx

(x ; t) = −Bn(x ; t) Sn(x ; t) + An(x ; t) Sn−1(x ; t),

where
An(x ; t) = 4xβn(x2 − 1

2 t + βn + βn+1),

Bn(x ; t) = 4x2βn +
(2λ+ 1)[1− (−1)n]

2
,

with βn- the recurrence coefficient in the three-term recurrence relation

xSn(x ; t) = Sn+1(x ; t) + βn(t;λ)Sn−1(x ; t).

Proof:Two methods:- Ladder operator method or Shohat’s method.
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Properties of generalized Freud polynomials Second order linear ODE

Second order linear ODEs

Theorem (CJK, 2016)

For the generalized Freud weight

Wλ(x) = |x |2λ+1 exp
(
−x4 + tx2

)
, x ∈ R,

the monic orthogonal polynomials Sn(x ; t) satisfy the differential equation

d2Sn

dx2 (x ; t) + Rn(x ; t)
dSn

dx
(x ; t) + Tn(x ; t)Sn(x ; t) = 0,

where

Rn(x ; t) = −4x3 + 2tx − 2λ+ 1

x
− 2x

x2 − 1
2
t + βn + βn+1

,

Tn(x ; t) = 4nx2 + 4βn + 16βn(βn + βn+1 − 1
2
)(βn + βn−1 − 1

2
)

− 8βnx
2 + (2λ+ 1)[1− (−1)n]

x2 − 1
2
t + βn + βn+1

+ (2λ+ 1)[1− (−1)n]

(
t − 1

2x2

)
.
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Properties of generalized Freud polynomials Recurrence coefficient

The recurrence coefficient βn(t;λ)

Theorem (CJK, 2016)

The recurrence coefficients βn(t;λ) in the three-term recurrence

xSn(x ; t) = Sn+1(x ; t) + βn(t;λ)Sn−1(x ; t)

where S−1(x ; t) = 0 and S0(x ; t) = 1 related to the weight Wλ are given by

β2n(t;λ) =
d

dt
ln
τn(t;λ+ 1)

τn(t;λ)
; β2n+1(t;λ) =

d

dt
ln

τn+1(t;λ)

τn(t;λ+ 1)
,

where τn(t;λ) is the Wronskian given by

τn(t;λ) =W (µ0, µ1, . . . , µn−1) =W
(
φλ,

dφλ
dt

, . . . ,
dn−1φλ

dtn−1

)
,

φλ(t) = µ0(t;λ) =
Γ(λ+ 1)

2(λ+1)/2
exp

(
1
8
t2
)
D−λ−1

(
− 1

2

√
2 t
)
.

with Dv (ξ), with v /∈ Z, is the parabolic cylinder function.
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Properties of generalized Freud polynomials Recurrence coefficient

Sample recurrence coefficients in terms of Φλ

The first few recurrence coefficients βn(t;λ) are given by

β1(t;λ) = Φλ,

β2(t;λ) = −2Φ2
λ − tΦλ − λ− 1

2Φλ
,

β3(t;λ) = − Φλ
2Φ2

λ − tΦλ − λ− 1
− λ+ 1

2Φλ
,

β4(t;λ) =
t

2(λ+ 2)
+

Φλ
2Φ2

λ − tΦλ − λ− 1

+
(λ+ 1)(t2 + 2λ+ 4)Φλ + (λ+ 1)2t

2(λ+ 2)[2(λ+ 2)Φ2
λ − (λ+ 1)tΦλ − (λ+ 1)2]

,

where

Φλ(t) =
d

dt
ln
{
D−λ−1

(
− 1

2

√
2 t
)

exp
(

1
8
t2
)}

= 1
2
t + 1

2

√
2

D−λ
(
− 1

2

√
2 t
)

D−λ−1

(
− 1

2

√
2 t
) .
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Properties of generalized Freud polynomials Recurrence coefficient

Some of the polynomials

By using the recurrence xSn(x ; t) = Sn+1(x ; t) + βn(t;λ)Sn−1(x ; t), the first few
polynomials:

S1(x ; t, λ) = x ,

S2(x ; t, λ) = x2 − Φλ,

S3(x ; t, λ) = x3 +
tΦλ + λ+ 1

2Φλ
x ,

S4(x ; t, λ) = x4 +
2tΦ2

λ − (t2 + 2)Φλ − (λ+ 1)t

2(2Φ2
λ − tΦλ − λ− 1)

x2

− 2(λ+ 2)Φ2
λ − (λ+ 1)tΦλ − (λ+ 1)2

2(2Φ2
λ − tΦλ − λ− 1)

,

S5(x ; t, λ) = x5 − 2(λ+ 3)tΦ2
λ − (λ+ 1)(t2 − 2)Φλ − (λ+ 1)2t

4(λ+ 2)Φ2
λ − 2(λ+ 1)tΦλ − 2(λ+ 1)2

x3

−
[
2(λ+ 2)2 − t2

]
Φ2
λ − (λ+ 1)(λ+ 4)tΦλ − (λ+ 1)2(λ+ 3)

4(λ+ 2)Φ2
λ − 2(λ+ 1)tΦλ − 2(λ+ 1)2

x .
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Properties of generalized Freud polynomials Recurrence coefficient

Thank you very much

for your

kind attention!
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Properties of generalized Freud polynomials Recurrence coefficient
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