

Hyperbolic hydraulic fracture with tortuosity

M. R. R. Kgatle, D. P. Mason

March 22, 2016

School of Computer Science and Applied Mathematics, University of the Witwatersrand.

M. R. R. Kgatle, D. P. Mason Hyperbolic hydraulic fracture with tortuosity

Model formulation

Problem description

$$v_x = v_x(x, z, t), \quad v_y = 0, \quad v_z = v_z(x, z, t), \quad p = p(x, z, t),$$

Image: A math a math

э

æ

M. R. R. Kgatle, D. P. Mason

- Reynolds flow law
- General flow law (Fitt et al): Substitute h^3 by $a_n h^n$
- * Fluid flux: $Q(t,x) = -\frac{2}{3\mu}a_nh^n\frac{\partial p}{\partial x}(t,x),$

* Width averaged fluid velocity: $\overline{v}_x(t,x) = -\frac{a_n}{3\mu}h^{n-1}\frac{\partial p}{\partial x}(t,x),$

* Governing PDE: $\frac{\partial h}{\partial t} = \frac{a_n}{3\mu} \frac{\partial}{\partial x} \left(h^n \frac{\partial p}{\partial x} \right).$

• Crack laws

M. R. R. Kgatle, D. P. Mason

• PKN approximation:
$$\sigma_{zz}(t,x) = \sigma_{zz}^{(\infty)} - \Lambda h(t,x), \quad \Lambda = \frac{E}{(1-\nu^2)B}$$

- Linear crack law (Pine et al [3], Fitt et al [1], Kgatle & Mason [2])
- Hyperbolic crack law (Goodman [4])

$$p(t,x) + p_2(t,x) = -\sigma_{zz}(t,x), \quad p_2(t,x) = -k \Big(\frac{h_{max} - h(t,x)}{h(t,x) - h_{min}} \Big)$$

where $k < 0$.

- $* h_{min} \ll h_{max}$, \therefore assume $h_{min} = 0$ (Fitt et al [1], King and Please [9])
- * Pressure gradient: $\frac{\partial p}{\partial x}(t, x) = \left(\Lambda \frac{kh_{max}}{h^2}\right)\frac{\partial h}{\partial x}$. * Transformation variables: $x^* = \frac{x}{L_0}$, $h^* = \frac{h}{h_{max}}$, $t^* = \frac{Ut}{L_0}$,

$$L^* = \frac{L}{L_o}, \quad \overline{v}_x^* = \frac{\overline{v}_x}{U}, \quad Q^* = \frac{Q}{h_{max}U}, \quad U = \frac{\Lambda h_{max}^3}{\mu L_o} \left(1 - \frac{\sigma_{zz}^{(\infty)}}{\Lambda h_{max}}\right)$$

M. R. R. Kgatle, D. P. Mason Hyperbolic hydraulic fracture with tortuosity

*

Governing equations

* Governing PDE:
$$\frac{\partial h^*}{\partial t^*} = K_n \frac{\partial}{\partial x^*} \left(h^{*n} \frac{\partial h^*}{\partial x^*} + \phi h^{*n-2} \frac{\partial h^*}{\partial x^*} \right)$$

* BCs:

 $h^*(t^*, L(t)) = 0.$

$$-2K_n\left(h^{*n}(t,0)\frac{\partial h^*}{\partial x^*}(t^*,0)+\phi h^{*n-2}(t^*,0)\frac{\partial h^*}{\partial x^*}(t^*,0)\right)=\frac{dV^*}{dt^*},$$

Fluid flux: $Q^*(t^*,x^*)=-2K_n\left(h^{*n}\frac{\partial h^*}{\partial x^*}+\phi h^{*n-2}\frac{\partial h^*}{\partial x^*}\right),$

* Width averaged velocity: $\overline{v}_{x}^{*}(t^{*}, x^{*}) = -K_{n}\left(h^{*n-1}\frac{\partial h^{*}}{\partial x^{*}} + \phi h^{*n-3}\frac{\partial h^{*}}{\partial x^{*}}\right)$

$$K_n = \frac{a_n h_{max}^{n-3}}{3} \left(\frac{1}{1 - \frac{\sigma_{zz}^{(\infty)}}{\Lambda h_{max}}} \right), \quad \phi = -\frac{k}{\Lambda h_{max}}, \quad k < 0.$$

M. R. R. Kgatle, D. P. Mason

Group invariant solution

$$\frac{\partial h}{\partial t} = K_n \frac{\partial}{\partial x} \Big(h^n \frac{\partial h}{\partial x} + \phi h^{n-2} \frac{\partial h}{\partial x} \Big).$$

- Other methods of solution (Huppert [7], Spence and Sharp [10])
- Lie point symmetry generator:

$$\mathbf{X} = (c_1 + c_2 t) \frac{\partial}{\partial t} + (c_3 + \frac{c_2}{2} x) \frac{\partial}{\partial x}$$

where c_1, c_2 , and c_3 are constants.

 $* X(\phi - h)|_{\phi = h} = 0 \rightarrow a$ linear PDE \rightarrow Group invariant solution:

$$h = F(\xi) = \left[\left(\frac{c_2}{c_1} \right) \frac{1}{2K_n} \right]^{\frac{1}{n}} f(u), \quad \xi = \left(\frac{c_2}{c_1} \right)^{\frac{1}{2}} u, \quad u = \frac{x}{L(t)}.$$

* Important half-width condition: $h^*(0,0) = \frac{h(0,0)}{h_{max}} = \beta$

* Partially open fracture: $0 \le \beta < 1$

M. R. R. Kgatle, D. P. Mason

The problem is to solve

* BVP:

$$\frac{d}{du}\left(f^{n}\frac{df}{du} + \frac{\phi f^{2}(0)}{\beta^{2}}f^{n-2}\frac{df}{du}\right) + \frac{d}{du}(uf) - f = 0,$$

$$f(1) = 0,$$

$$f^{n}(0)\frac{df}{du}(0) = -\frac{1}{\left(1 + \frac{\phi}{\beta^{2}}\right)}\int_{0}^{1}f(u)du.$$

$$* \text{ Length: } L(t) = \left(1 + 2\left(\frac{\beta}{f(0)}\right)^{n}K_{n}t\right)^{\frac{1}{2}},$$

$$* \text{ Volume: } V(t) = 2\beta L(t)\int_{0}^{1}\frac{f(u)}{f(0)}du,$$

$$* \text{ Half-width: } h(t, x) = \beta\frac{f(u)}{f(0)}.$$

< 注▶ < 注▶

3

M. R. R. Kgatle, D. P. Mason

* Fluid flux:

$$Q(t,x) = -2\frac{K_n}{L(t)} \left(\frac{\beta}{f(0)}\right)^{n+1} \left(f^n + \frac{\phi f^2(0)}{\beta^2} f^{n-2}\right) \frac{\partial f}{\partial u},$$

* Width averaged velocity:

$$\overline{v}_{x}(t,x) = -\frac{K_{n}}{L(t)} \left(\frac{\beta^{n}}{f^{n}(0)}\right) \left(f^{n-1} + \frac{\phi f^{2}(0)}{\beta^{2}} f^{n-3}\right) \frac{\partial f}{\partial u},$$

where

$$K_n = \frac{a_n h_{max}^{n-3}}{3} \left(\frac{1}{1 - \frac{\sigma_{zz}^{(\infty)}}{\Lambda h_{max}}} \right), \quad \phi = -\frac{k}{\Lambda h_{max}}$$

and

$$0 \leq \beta < 1.$$

M. R. R. Kgatle, D. P. Mason Hyperbolic hydraulic fracture with tortuosity

Operating conditions

Conservation laws

- Double reduction theorem (Sjöberg [8])
- Conservation law for a PDE $\left. D_t \, T^1 + D_x \, T^2 \right|_{PDE} = 0$

where D_t and D_x are total derivatives

$$D_{t} = \frac{\partial}{\partial t} + h_{t} \frac{\partial}{\partial h} + h_{tt} \frac{\partial}{\partial h_{t}} + h_{xt} \frac{\partial}{\partial h_{x}} + \dots$$
$$D_{x} = \frac{\partial}{\partial x} + h_{x} \frac{\partial}{\partial h} + h_{tx} \frac{\partial}{\partial h_{t}} + h_{xx} \frac{\partial}{\partial h_{x}} + \dots$$

respectively and $\mathbf{T} = (T^1, T^2)$ is a conserved vector.

• New conserved vector (Kara and Mahomed [12]):

$$\mathbf{T}^* = X(T^i) + T^i D_k(\xi^k) - T^k D_k(\xi^i), \quad i = 1, 2.$$

• Association (Kara and Mahomed [13]): $\mathbf{T}^* = 0$

M. R. R. Kgatle, D. P. Mason

• Hyperbolic hydraulic fracture with tortuosity

$$\frac{\partial h}{\partial t} = K_n \frac{\partial}{\partial x} \left(h^n \frac{\partial h}{\partial x} + \phi h^{n-2} \frac{\partial h}{\partial x} \right)$$

* From the elementary conservation law, the conserved vector is

$$\begin{split} \mathbf{T}_{(1)} &= (h, -\mathcal{K}_n(h^n + \phi h^{n-2})h_x), \\ \text{New conserved vector:} \quad \mathbf{T}_{(1)}^* = \frac{c_2}{2}\mathbf{T}_{(1)}. \end{split}$$

* From the second conservation law, the conserved vector is

$$\mathbf{T}_{(2)} = \left(xh, K_n \left[\frac{h^{n+1}}{(n+1)} + \phi \frac{h^{n-1}}{(n-1)} - x(h^n + \phi h^{n-2})h_x \right] \right),$$

New conserved vector: $\mathbf{T}^*_{(2)} = c_3 \mathbf{T}_{(1)} + c_2 \mathbf{T}_{(2)}$.

* Association for non-trivial solutions is not satisfied

Comparison of Lie point symmetries

• Hyperbolic hydraulic fracture:

$$X = (c_1 + c_2 t) \frac{\partial}{\partial t} + (c_3 + \frac{c_2}{2} x) \frac{\partial}{\partial x}$$

• Linear hydraulic fracture:

$$X = (c_1 + c_2 t) \frac{\partial}{\partial t} + (c_3 + c_4 x) \frac{\partial}{\partial x} + \frac{1}{n} (2c_4 - c_2) h \frac{\partial}{\partial h}$$
$$X = \left(\frac{c_1}{c_2} + t\right) \frac{\partial}{\partial t} + \left(\frac{c_3}{c_2} + \alpha x\right) \frac{\partial}{\partial x} + \frac{1}{n} (2\alpha - 1) h \frac{\partial}{\partial h}$$
$$\eta = \frac{1}{n} (2\alpha - 1) h = 0, \quad \text{provided} \quad \alpha = \frac{1}{2}$$
$$X = (c_1 + c_2 t) \frac{\partial}{\partial t} + (c_3 + \frac{c_2}{2} x) \frac{\partial}{\partial x}$$

(日) (同) (三) (三)

• Constant pressure working condition

Numerical solution

Method of solution

 $\bullet \; \mathsf{BVP} \to 2 \; \mathsf{IVPs}$

* Transformation variables: $\overline{u} = \gamma u$, $\overline{f} = \gamma^{-\frac{2}{n}} f$.

• Asymptotic solution, (as u
ightarrow 1)

$$f(u) \sim \left[(n-2)\frac{\beta^2}{\phi f^2(0)} \right]^{\frac{1}{n-2}} (1-u)^{\frac{1}{n-2}}, \quad \text{for} \quad 2 < n < 5,$$

$$h(t,x) \sim \beta \left[(n-2)\frac{\beta^2}{\phi f^2(0)} \right]^{\frac{1}{n-2}} \left(1 - \frac{x}{L(t)} \right)^{\frac{1}{n-2}},$$

$$\frac{\partial h}{\partial x} (t, L(t)) \sim \begin{cases} -\infty, & n > 3\\ -\frac{1}{\phi L(t)} \left(\frac{\beta}{f(0)} \right)^3, & n = 3\\ 0, & 2 \le n < 3 \end{cases}$$

M. R. R. Kgatle, D. P. Mason

Numerical results

Partially open fracture ($\beta = 0.5$) propagating with fluid injected at the fracture entry at a constant pressure. The numerical solution for the half-width h(t, x) plotted against x for increasing values of the scaled time $K_n t$ and for (a) n = 4, (b) n = 3, (c) n = 2.5.

M. R. R. Kgatle, D. P. Mason

Variation of ϕ

Partially open fracture ($\beta = 0.5$) propagating with fluid injected at the fracture entry at a constant pressure for (i) $\phi = 0$, (ii) $\phi = 0.1$, (iii) $\phi = 0.5$, (iv) $\phi = 1$ and for n = 3. (a) The half-width of the fracture plotted against x for the time scale $K_n t = 20$ (b) The length of the fracture plotted against $K_n t$.

M. R. R. Kgatle, D. P. Mason

Width averaged fluid velocity

Velocity ratio :
$$\frac{\overline{v}_{x}}{dL/dt} = -f^{n-1}\left(1 + \phi\left(\frac{f(0)}{\beta f}\right)^{2}\right)\frac{df}{du}$$

Velocity ratio curves $\frac{\overline{v}_x}{dL/dt}$ plotted againt *u* for a partially open fracture ($\beta = 0.5$) propagating with fluid injected at the fracture entry at a constant pressure and for (a) n = 4, (b) n = 3, (c) n = 2.5.

Width averaged fluid velocity

Velocity ratio :
$$\frac{\overline{v}_x}{dL/dt} = -f^{n-1}\left(1 + \phi\left(\frac{f(0)}{\beta f}\right)^2\right)\frac{df}{du} = (1 - A)u + A$$

Velocity ratio curves $\frac{\overline{v}_x}{dL/dt}$ plotted againt *u* for a partially open fracture ($\beta = 0.5$) propagating with fluid injected at the fracture entry at a constant pressure and for (a) n = 4, (b) n = 3, (c) n = 2.5.

Approximate analytical solution

• Problem for 2 < n < 5: $f^n + pf^{n-2} + q = 0$, where $p = \frac{n\phi f^2(0)}{\beta^2(n-2)}$, $q = n\left(\frac{(1-A)}{2}u^2 + Au - \frac{(A+1)}{2}\right)$ and $f(0) = \left(\frac{(A+1)}{2}\right)^{\frac{1}{n}} \left[\frac{n(n-2)\beta^2}{\beta^2(n-2) + \phi n}\right]^{\frac{1}{n}}$.

• Special case of n=3: $f^3 + pf + q = 0$,

$$f(u) = \frac{(\sqrt{3}\sqrt{4p^3 + 27q^2} - 9q)^{1/3}}{2^{1/3}3^{2/3}} - \frac{\left(\frac{2}{3}\right)^{1/3}p}{(\sqrt{3}\sqrt{4p^3 + 27q^2} - 9q)^{1/3}}.$$

1 /2

ヘロト 人間 と 人 回 と 一

3

• Special case of n=4: $f^4 + pf^2 + q = 0$,

$$f(u) = \frac{\sqrt{-p + \sqrt{p^2 - 4q}}}{\sqrt{2}}$$

M. R. R. Kgatle, D. P. Mason

• General case
$$2 < n < 5$$
:

$$f(u) = \left[\frac{\left[(A+1)-2Au-(1-A)u^2\right]\beta^2 n(n-2)f^2(u)}{2[\beta^2(n-2)f^2(u)+\phi nf^2(0)]}\right]^{\frac{1}{n}}$$

$$f_{i+1} = \left[\frac{\left[(A+1)-2Au-(1-A)u^2\right]\beta^2 n(n-2)f_i^2}{2[\beta^2(n-2)f_i^2+\phi nf^2(0)]}\right]^{\frac{1}{n}}, \quad i = 0, 1, 2, ...s,$$

$$A_{i+1} = \left[2^{\frac{1}{n}}\beta^2 n(n-2)[\beta^2(n-2)+\phi n]^{\frac{2}{n}}\right]^{\frac{1}{n}}\int_0^1 (1-u)^{\frac{1}{n}} \times \left(\frac{f_i^2}{2^{\frac{2}{n}}\beta^2(n-2)[\beta^2(n-2)+\phi n]^{\frac{2}{n}}f_i^2+\phi n(A_i+1)^{\frac{2}{n}}[n(n-2)\beta^2]^{\frac{2}{n}}}\right)^{\frac{1}{n}} du,$$

э

s+1 = No. of iterations for convergence to be achieved

M. R. R. Kgatle, D. P. Mason

M. R. R. Kgatle, D. P. Mason

- Earlier paper: the linear crack model was found to give both fluid injection and extraction solutions.
- The hyperbolic crack law model was found to admit only one solution of fluid injected at constant pressure at the fracture entry.
- All solutions for the linear crack law model were found converge to the constant pressure solution.
- An analytical solution could not be derived. A numerical solution was therefore investigated and obtained.
- The width averaged fluid velocity was obtained to increase approx linearly along the fracture length.
- The approximate analytical solution may be required in practice.

・ロト ・ 日 ト ・ 日 ト ・

- A. D.Fitt, A. D. Kelly and C. P. Please, Crack propagation models for rock fracture in a geothermal energy reservoir, *SIAM J Appl Math.* 55 (1995) 1592-1608.
- 2 M. R. R. Kgatle and D. P. Mason, Effects of tortuosity on the propagation of a linear two-dimensional hydraulic fracture, *Inter. J Non-Linear Mech.* 61 (2014) 39-53.
- **3** R. J. Pine, P. A. Cundall, Applications of the fluid-rock interaction programme (FRIP) to the modelling of hot dry geothermal energy systems, *Proc. Int. S Fundamentals*, September 1985, pp 293-302.
- 4 R. E. Goodman, The mechanical properties of joints, *Proc.* 3rd Congr ISRM, Denver, 1A. (1947) 127-140.

Modelling process Group invariant soln. Operating conditions Numerical soln. Averaged velocity Conclusion

- 5 T. Perkins and L. Kern, Widths of hydraulic fracture, *Journal* of *Petroleum Technology*. 222 (1961) 937-949.
- 6 R. Nordgren, Propagation of vertical hydraulic fractures, Journal of Petroleum Technology. 253 (1972) 306-314.
- 7 H. E. Huppert, The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface, *J. Fluid Mech.* 121 (1982) 43-58.
- 8 A. Sjöberg, Double reduction of PDEs from the association of symmetries with conservation laws with applications, *Appl. Math. Comput.* 184 (2007) 608-616.
- 9 R. J. King and C. P. Please, Diffusion of dopant in crystalline silicon: An asymptotic analysis, *IMA J Appl Math.* 37 (1986) 185-197.

Modelling process Group invariant soln. Operating conditions Numerical soln. Averaged velocity Conclusion

- 10 D. A. Spence and P. Sharp, Self-similar solutions for elasto-hydrodynamic cavity flow, *Proc.R.Soc.Lond.A.* 400 (1985) 289-313.
- 11 A. G. Fareo and D. P. Mason, Group invariant solutions for a pre-existing fluid-driven fracture in permeable rock, *Nonlinear Analysis: Real World Applications*. 12 (2011) 767-779.
- 12 A. H. Kara and F. M. Mahomed, A basis of conservation laws for partial differential equations, *J Nonlinear Math Phys.* 9 (2002) 60-72.
- 13 A. H. Kara and F. M. Mahomed, Relationship between symmetries and conservation laws, *International J of Theoretical Physics.* 39 (2000) 23-40.

Thank You

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

M. R. R. Kgatle, D. P. Mason Hyperbolic hydraulic fracture with tortuosity