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• Motivation 1 - Can Conservation laws be built a priori into

numerical schemes via a discrete Noether’s Theorem?

• Motivation 2 - simultaneous smooth and discrete invariants

and their syzygies? e.g. for discrete integrable systems

• Definition of a multispace

• Group actions and moving frames on a multispace

• Application to variational shallow water systems

• A Lagrange interpolation variational calculus?



Current obsession: shallow water variational systems

I. Roulstone and J. Norbury, Computing Superstorm Sandy, Scientific

American, 309 2013



Consider (uα) 7→ ∫
ΩL(x, uα, uαK) dxdt.

Noether’s Theorem yields
∑
αQ

αEα(L) + D
DtA0 +

∑
i

D
Dxi

Ai = 0

Symmetry Conserved Quantity, A0

Translation in time Energy

Translation in space Linear momentum

Rotation in space Angular momentum

Particle relabelling Potential vorticity∗

Physically important symmetries involve smooth actions in the
base space – which is discretised!

* Actually a differential consequence of momenta conservation laws for this

class of symmetry.



Philosophy

1. Discretise the Lagrangian functional,

L[uα] =
∫
ΩL(x, uα, uαK) dx according to some scheme.

2. Insist the discretised Lagrangian has both the correct

continuum limit and the Lie group invariance.∗

3. Obtain discrete conservation laws via a discrete version of

Noether’s Theorem.

4. Prove the discrete Euler-Lagrange equations and the

discrete laws converge to the smooth laws in some useful sense.

*Achieving this is the central part of this talk for a particular scheme.



Can we achieve all four of these?

Yes! For FEM, see ELM and Pryer, 2015, FoCM. I also have a

theoretical demonstration of weak → smooth PV conservation.

2. Insist the discretised Lagrangian has both the correct

continuum limit and the Lie group invariance.

2.1. Construction of a manifold, multispace consisting of

discrete curves and surfaces with the usual jet bundle

embedded as a smooth sub manifold.

2.2. Algorithmic construction of discrete and differential

invariants, together with their syzygies (recurrence relations),

using the Lie group based moving frame.

We turn now to Step 2.1.



coalesce

→

coalesce ↓

Lagrange, Hermite

and Taylor approximation



Basic idea

In Hirsch’s defintion of a jet bundle, we have that

[x, f, U ]r = [x, Tr(f)|x, U ]r

that is, a function on a domain U is equivalent to its rth order

Taylor polynomial calculated at the point x.

We view the Taylor polynomial as the coalesence limit of the

Lagrange interpolation of the function on a lattice Γ:

Lagrange|Γ(f)→ T (f)|x, Γ→ x.

This process requires

• an appropriate lattice Γ

• a well controlled coalescence process.



x0 x0

x0

x0
Some “corner

lattices”



Hyperplane coalescence



Data for a multispace equivalence class [Γ, f, φ, U ] ∼ [Γ, f ′, φ, U ]

U
(U)

M

coordinate 
chart in M

(U)

R
f

f'



Local coordinates on multispace

A function f defined on the plane R2, with values at the points

x0 = (x0, x1), x1 = (x1, y1) and x2 = (x2, y2), has the

interpolation

p(f) = f(x0) +

∣∣∣∣∣∣∣∣∣∣∣
1 f(x0) y0

1 f(x1) y1

1 f(x2) y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 x0 y0

1 x1 y1

1 x2 y2

∣∣∣∣∣∣∣∣∣∣∣

(x− x0) +

∣∣∣∣∣∣∣∣∣∣∣
1 x0 f(x0)

1 x1 f(x1)

1 x2 f(x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 x0 y0

1 x1 y1

1 x2 y2

∣∣∣∣∣∣∣∣∣∣∣

(y − y0)

This multispace element has six coordinates.



A function f defined on the plane R2, with values at the points

x0 = (x0, x1), x1 = (x1, y1) with multiplicity two and with

D(f)(v)
∣∣∣
x1

= v1fx(x1, y1) + v2fy(x1, y1), has the interpolation

p(f) =f(x0)+

∣∣∣∣∣∣∣∣∣∣∣
1 f(x0) y0

1 f(x1) y1

0 D(f)(v)
∣∣∣
x1

v2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 x0 y0

1 x1 y1

0 v1 v2

∣∣∣∣∣∣∣∣∣∣∣

(x− x0)+

∣∣∣∣∣∣∣∣∣∣∣
1 x0 f(x0)

1 x1 f(x1)

0 v1 D(f)(v)
∣∣∣
x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 x0 y0

1 x1 y1

0 v1 v2

∣∣∣∣∣∣∣∣∣∣∣

(y − y0)

This multispace element has six coordinates.



Multispace approximations of curves and surfaces follows by

applying the above multispace construction to each co-ordinate

function separately.

Proofs rely on the multivariate interpolation results due to Carl

de Boor and Amos Ron† which is in fact very much broader in

scope than we have used here – a huge variety of functionals

can be used in addition to point and derivative evaluation.

However, multivariate approximation is, on general sets of

points, not well defined.

†On Multivariate Polynomial Interpolation, Constr. Approx. 6 (1990), 287-
302.



We turn now briefly to Step 2.2. Moving frames can be used

to describe complete, or generating, sets of invariants and their

relations.

There are excellent algorithms to manipulate quantities derived

from moving frames in symbolic computation environments.

Moving frames are flexible, to allow for ease of computation in

specific applications, and they satisfy equations that allow them

to be obtained numerically (if necessary).

Fels and Olver, Acta App. Math 51 (1998) and 55 (1999)



Moving Frame if G × M → M is a regular, free action

K

different

orbits
•

•k
z

h∈G

ρ : M → G ρ(z) = h is equivariant: ρ(g · z) = ρ(z)g−1



Calculation of a moving frame

Specify K, the cross-section, as the locus of Φ(z) = 0. Then

solve Φ(g · z) = 0 for g. In practice, solve

φj(g · z) = 0, j = 1, . . . , r = dim(G)

for the r independent parameters describing g. Call the solution

ρ(z). Invoke IFT. Unique solution yields

ρ(g · z) = ρ(z) · g−1.

• local solutions only this way: but see Hubert and Kogan,

FoCM 7 (2007) and J. Symb. Comp., 42 (2007).



Equivariance is the key to success. In particular, we obtain:

Invariants: The components of I(z) = ρ(z) · z are invariant.

I(g · z) = ρ(g · z) · (g · z) = ρ(z)g−1g · z = ρ(z) · z.
If I(zi) are the canonical invariants for z = (z1, z2, . . . , zn), and

F (z1, z2, . . . , zn) is an invariant, then we have the

Replacement rule,

F (z1, z2, . . . , zn) = F (g · z1, g · z2, . . . , g · zn)

= F (g · z1, g · z2, . . . , g · zn)|frame

= F (I(z1), I(z2), . . . , I(zn))



We designed multispace to solve the problem of co-ordinating

moving frames on smooth curves and surfaces, and their

discretisations. This is achieved by putting a moving frame on

multispace.

First, a Lie group action. For example, G = R n R, with

(ε, a) · (x, y, u(x)) = (x, y, eεu+ a),

the group product being

(ε, a) · (δ, b) = (ε+ δ, a+ eεb).

The induced action on multispace is that the lattice points are

fixed, while . . .



for example, the coefficient of (x− x0) in the first order

interpolation of u moves as

(ε, a) ·

∣∣∣∣∣∣∣∣∣∣∣
1 u0 y0

1 u1 y1

1 u2 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 x0 y0

1 x1 y1

1 x2 y2

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣
1 eεu0 + a y0

1 eεu1 + a y1

1 eεu2 + a y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 x0 y0

1 x1 y1

1 x2 y2

∣∣∣∣∣∣∣∣∣∣∣

= eε

∣∣∣∣∣∣∣∣∣∣∣
1 u0 y0

1 u1 y1

1 u2 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 x0 y0

1 x1 y1

1 x2 y2

∣∣∣∣∣∣∣∣∣∣∣
where ui = u(xi). This is evidently consistent with the induced

action on derivatives calculated via the chain rule, which is

g · ux = eε ux.



Continuing with (ε, a) · (x, y, u) = (x, y, eε u+ a)

If the interpolation of u(x, y) on the lattice (xi, yi), i = 0,1,2 is

p(u) = u0 +A(x− x0) +B (y − y0)

with u0 = u(x0, y0), then

(ε, a) · (u0, A,B) = (eε u0 + a, eεA, eεB)

Definition: Given a Lie group action G×M →M , a moving
frame is an equivariant map ρ : M → G.

If we solve

(ε, a) · (u(x0, y0), A,B) = (0,1, ∗)
for ε and a, we have the moving frame

ρ(u0, A,B) =
(
− logA,−u0

A

)



Working with the frame ρ(u0, A,B) =
(
− logA,−u0

A

)
.

The equivariance of the frame is straightforward to show:

ρ(eδu0+b, eδA, eδB) = ρ(u0, A,B)·
(
−δ,−be−δ

)
= ρ(u0, A,B)·(δ, b)−1.

Depending on whether the coefficient A is determined by the
grid being three distinct points, or a single point with
multiplicity three, in which case A looks either like a quotient
of determinants or is a derivative expression, the frame will
either be in terms of the Lagrange ‘discretisation’, or in terms
of the Taylor coefficients.

The point is that a frame on multispace is, under general
conditions, simultaneously a smooth frame and a discretised
frame, with equivariance maintained under coalescence.



Recall the frame was obtained by solving

(ε, a) · (u(x0, y0), A,B) = (0,1, ∗).
Considering now the invariants of the action, we can evaluate
ρ ·B = (ε, a) ·B

∣∣∣
(ε,a)=ρ

. This yields the invariant,

ρ ·B =
B

A
=

∣∣∣∣∣∣∣∣∣∣∣
1 u0 y0

1 u1 y1

1 u2 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 x0 u0

1 x1 u1

1 x2 u2

∣∣∣∣∣∣∣∣∣∣∣

or
ux

uy
.

this last being if evaluated on the embedded jet bundle.



We have that ρ is a function of the multispace element, and so

depends on Γ, and u evaluated on the lattice: ρ = ρ(Γ, u).

We can also investigate invariants arising as the components of

ρ(Γ′, u′) · ρ(Γ, u)−1, u = u′ or u 6= u′

If Γ′ = Γ + he1 we expect, and indeed obtain,

d

dh

∣∣∣
h=0

ρ(Γ + he1, u) · ρ(Γ, u)−1 →Γ→x Dxρ ρ−1

where the RHS has the frame ρ evaluated on the embedded jet

bundle.

That is, discrete Maurer-Cartan invariants limit to differential

Maurer-Cartan invariants.



By virtue of having a moving frame on multispace, we can
obtain discrete invariants matching the smooth ones. Hence we
can build discrete Lagrangians matching the smooth, both in
terms of continuum limit and invariance.

Let’s look at variational shallow water systems!!

The base space has particle labels (a, b), the dependent
variables are the position of the particle at time t, given by
x = x(a, b, t), y = y(a, b, t) with x(a, b,0) = a and y(a, b,0) = b.

We want a Lagrangian which is invariant under translation in a,
b and t, rotation in the (a, b) plane, and, if at all possible, a
discrete analogue of the particle relabelling symmetry,

(a, b) 7→ (A(a, b), B(a, b)), AaBb −AbBa = 1.



At each time step, we consider the mesh in (a, b) space to be

the union of length one corner lattices, and we calculate the

approximations to x and y via Lagrange interpolation.



Set the the lattice points to be,

(a0, b0, t0), (a1, b1, t0), (a2, b2, t0), (a3, b3, t1)

where x takes the values x0, x1, x2 and x3 respectively, and
similarly for y. Then the Lagrange interpolation coefficients for
x are

M(xa) =

∣∣∣∣∣∣∣∣∣
1 x0 b0

1 x1 b1

1 x2 b2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 a0 b0

1 a1 b1

1 a2 b2

∣∣∣∣∣∣∣∣∣

, M(xb) =

∣∣∣∣∣∣∣∣∣
1 a0 x0

1 a1 x1

1 a2 x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 a0 b0

1 a1 b1

1 a2 b2

∣∣∣∣∣∣∣∣∣
where

p(x) = x0 +M(xa)(a− a0) +M(xb)(b− b0) +M(xt)(t− t0)



together with

M(xt) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x0 a0 b0

1 x1 a1 b1

1 x2 a2 b2

1 x3 a3 b3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(t1 − t0)

∣∣∣∣∣∣∣∣∣∣∣
1 a0 b0

1 a1 b1

1 a2 b2

∣∣∣∣∣∣∣∣∣∣∣

=
x3 − x0

t1 − t0

if (a3, b3) = (a0, b0), that is, if the mesh/initial parameter space

is fixed.



We begin with the finite dimensional Lie group SL(2) n R2

acting linearly on (a, b)-space, in the neighbourhood of a lattice.

The group action is easily induced on these coordinates. If we

take the normalisation equations to be

ã0 = 0, b̃0 = 0, M̃(xa) = 1, M̃(xb) = 0, M̃(ya) = 0

then the SL(2) part of the frame is d −b
−c a


∣∣∣∣∣∣
frame

=

 M(xa) M(xb)

M(ya)
∆

M(yb)
∆





where

∆ =

∣∣∣∣∣∣∣∣∣∣∣
1 x0 y0

1 x1 y1

1 x2 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 a0 b0

1 a1 b1

1 a2 b2

∣∣∣∣∣∣∣∣∣∣∣

→ctm limit xayb − xbya

The invariants are the remaining coordinates evaluated on the

frame. We have

M̃(yb)
∣∣∣∣
frame

= ∆

and in fact M(xt), M(yt) are invariant, as is the denominator.



Shallow water variational systems arise from Lagrangians of the

form ∫
Ω×[t0,t1]

L(x, y, xayb − xbya, xt, yt) dadbdt.

The associated discrete Lagrangians are then

∑
Γ

L(x, y,∆,M(xt),M(yt))

∣∣∣∣∣∣∣∣∣∣∣
1 a0 b0

1 a1 b1

1 a2 b2

∣∣∣∣∣∣∣∣∣∣∣
(tn+1 − tn)



Considering Lagrangians whose arguments are multispace
co-ordinates, we can arrive readily at Euler Lagrange equations
and a discrete Noether theorem.

To give an idea: The first order multispace approximation
of u(x) is p(u)(x) = u0 +M(ux)(x− x0) and then

L[u] =
∫

Ω
L(x, u, ux) dx L[x, u] =

∑
x0

L (x0, u0,M(ux)) (x1−x0).

Induce the infinitesimal Lie group action

x̃ = x+ εξ(x, u) +O(ε2), ũ = u+ εφ(x, u) +O(ε2),

we have the induced action is, miraculously,

M̃(ux) =M(ux) + ε (M(φx)−M(ux)M(ξx)) +O(ε2)

which compares to the induced action on the derivative as
obtained by the chain rule, ũx = ux + ε

(
dφ
dx − ux

dξ
dx

)
+O(ε2).



The invariance condition of the (multispace) Lagrangian is

0 =
d

dε

∣∣∣∣
ε=0
L[x+ εξ, u+ εφ]

which gives

0 = “Ex(L)”ξ0 + Eu(L)φ0 + (S − id)(A)

where
Smooth Discrete

L[x, u]
∫
L
(
x, u, ut

xt

)
xt dt

∑
x0
L (x0, u0,M(ux)) (x1 − x0)

0 = Ex 0 = ∂L
∂x
− d

dt

[
L− ut

xt
D3(L)

]
0 = (x1 − x0) ∂L

∂x0
+
(
S−1 − id

)[
L−M(ux) ∂L

∂M(ux)

]
0 = Eu 0 = xt

∂L
∂u
− d

dt
D3(L) 0 = (x1 − x0) ∂L

∂u0
+
(
S−1 − id

)
∂L

∂M(ux)

c = A c = ∂L
∂ux
φ+

(
L− ux ∂L∂ux

)
ξ c = ∂L

∂M(ux)
φ1 +

(
L−M(ux) ∂L

∂M(ux)

)
ξ1



Something interesting about this 1-d case.

The smooth Euler Lagrange equations satisfy

utE
u(L) + xtE

x(L) = 0

by virtue of

dL

dt
= xt

∂L

∂x
+ ut

∂L

∂u
+ utt

∂L

∂ut
+ · · ·

The compatibility condition of the discrete-Lagrange Euler

Lagrange equations is(
id− S−1

)
L = (x1 − x0)

[
∂L
∂x0

+M(ux) ∂L∂u0

]
+S−1 ∂L

∂M(ux)

(
id− S−1

)
(M(ux))



Still to be fully elucidated:

1. A discrete exterior calculus based on Lagrange interpolation

as part of an exact variational complex.

2. The weak form of the potential vorticity that can be

obtained for the discrete variational SWW systems.

3. Consequences of the conserved multi-symplectic forms –

these are readily written down.

3. And last but not least: achieving stable numerical

calculations. (!!)



Thank you!!


