Beyond integrability: the far-reaching consequences of thinking about boundary conditions

Beatrice Pelloni

University of Reading (soon → Heriot-Watt University)

SANUM - Stellenbosch, 22-24 March 2016
Integrable PDEs - Important discovery of the ’60s/’70s, many fundamental models of mathematical physics (mostly in one space dim), nonlinear PDE but "close" to linear
Integrable PDEs - Important discovery of the ’60s/’70s, many fundamental models of mathematical physics (mostly in one space dim), nonlinear PDE but ”close” to linear

Kruskal, Lax, Zakharov, Shabat… : nonlinear integrable PDE theory - the initial (or periodic) value problem for decaying (or periodic) solutions is solved by the Inverse Scattering Transform (IST) ∼ a nonlinear Fourier transform
Integrable PDEs - Important discovery of the ’60s/’70s, many fundamental models of mathematical physics (mostly in one space dim), nonlinear PDE but "close" to linear

Kruskal, Lax, Zakharov, Shabat… : nonlinear integrable PDE theory - the initial (or periodic) value problem for decaying (or periodic) solutions is solved by the **Inverse Scattering Transform** (IST) \sim a nonlinear Fourier transform

Question: Is it possible to extend the applicability of the IST to **boundary value problems**?
Integrable PDEs - Important discovery of the ’60s/’70s, many fundamental models of mathematical physics (mostly in one space dim), nonlinear PDE but “close” to linear

Kruskal, Lax, Zakharov, Shabat…: nonlinear *integrable* PDE theory - the initial (or periodic) value problem for decaying (or periodic) solutions is solved by the **Inverse Scattering Transform** (IST) ∼ a nonlinear Fourier transform

Question: Is it possible to extend the applicability of the IST to **boundary value problems**?

Answer: *Do we really understand linear BVPs?*

Novel point of view for deriving integral transforms - the **Unified Transform** (UT) (*Fokas*)

→ results in linear, spectral and numerical theory and applications
The most important integral transform: Fourier transform

Given $u(x)$ a smooth, decaying function on \mathbb{R}, the Fourier transform is the map

$$
 u(x) \rightarrow \hat{u}(\lambda, t) = \int_{-\infty}^{\infty} e^{-i\lambda x} u(x) dx, \quad \lambda \in \mathbb{R}.
$$

Given $\hat{u}(\lambda)$, $\lambda \in \mathbb{R}$, with sufficient decay as $\lambda \rightarrow \infty$, we can use the inverse transform to represent $u(x)$:

$$
 \hat{u}(\lambda) \rightarrow u(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\lambda x} \hat{u}(\lambda) d\lambda, \quad x \in \mathbb{R}.
$$
Linear Initial Value Problems, $x \in \mathbb{R}$

$$u_t + u_{xxx} = 0, \quad u(x, 0) = u_0(x) \text{ smooth, decaying at } \pm \infty$$

(linear part of the KdV equation: $u_t + u_{xxx} + uu_x = 0$)
Linear Initial Value Problems, $x \in \mathbb{R}$

\[u_t + u_{xxx} = 0, \quad u(x, 0) = u_0(x) \text{ smooth, decaying at } \pm \infty \]

(linear part of the KdV equation: $u_t + u_{xxx} + uu_x = 0$)

on $\mathbb{R} \times (0, T)$: use Fourier Transform:

\[\hat{u}_t(\lambda, t) + (i\lambda)^3 \hat{u}(\lambda, t) = 0, \quad \lambda \in \mathbb{R} \]

solution: \[u(x, t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\lambda x + i\lambda^3 t} \hat{u}_0(\lambda) d\lambda. \]
...with a boundary - do we need another transform?

on \((0, \infty) \times (0, T)\):

\[
\begin{align*}
 u_t + u_{xxx} &= 0, & u(x,0) &= u_0(x), & u(0,t) &= u_1(t)
\end{align*}
\]

Fourier transform the equation:

\[
\hat{u}_t(\lambda, t) + (i\lambda)^3 \hat{u}(\lambda, t) = u_{xx}(0, t) + i\lambda u_x(0, t) - \lambda^2 u(0, t)
\]
...with a boundary - do we need another transform?

on \((0, \infty) \times (0, T)\):

\[
\begin{align*}
\frac{\partial u}{\partial t} + u_{xxx} &= 0, \\
u(x, 0) &= u_0(x), \\
u(0, t) &= u_1(t)
\end{align*}
\]

Fourier transform the equation:

\[
\hat{u}_t(\lambda, t) + (i\lambda)^3 \hat{u}(\lambda, t) = u_{xx}(0, t) + i\lambda u_x(0, t) - \lambda^2 u(0, t)
\]

"solution":

\[
\begin{align*}
u(x, t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\lambda x + i\lambda^3 t} \hat{u}_0(\lambda) d\lambda + \\
&+ \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\lambda x + i\lambda^3 t} \left[\int_{0}^{t} e^{-i\lambda^3 s} \left(u_{xx}(0, s) + i\lambda u_x(0, s) - \lambda^2 u_1(s) \right) ds \right] d\lambda.
\end{align*}
\]

(Note: could use Laplace transform)
2-point boundary value problems

\[u_t = u_{xx}, \quad u(x, 0) = u_0(x), \quad \text{in } [0, 1] \times (0, T), \quad \text{2 boundary cond’s} \]

use separation of var’s and eigenfunctions of

\[S = \frac{d^2}{dx^2} \text{ on } \mathcal{D} = \{ f \in C^\infty([0, 1]) : f \text{ satisfies the bc’s} \} \subset L^2[0, 1] \]

\(S \) is selfadjoint and we can compute its eigenvalues \(\lambda_n \) and eigenfunctions \(\phi_n \) (depend on bc’s), and

\[u(x, t) = \sum_n (u_0, \phi_n) e^{-\lambda_n^2 t} \phi_n(x) \left(\text{e.g. } = \sum_j \hat{u}_0(n) e^{-\pi^2n^2 t} \sin \pi nx \right) \]
2-point boundary value problems

on $[0, 1] \times (0, T)$:

\[u_t = u_{xxx}, \quad u(x, 0) = u_0(x), \quad \text{3 b’dary cond’s (_____________________)} \]
2-point boundary value problems

on \([0, 1] \times (0, T)\):

\[u_t = u_{xxx}, \quad u(x, 0) = u_0(x), \quad 3 \text{ b'dary cond's (?)} \]

Separate variables, and use eigenfunctions of

\[S = i \frac{d^3}{dx^3} \text{ on } D = \{ f \in C^\infty([0, 1]) : f \text{ satisfies 3 bc's} \} \subset L^2[0, 1]? \]

\(S\) is not generally selfadjoint (because of BC), but has infinitely many real eigenvalues \(\lambda_n\), and associated eigenfunctions \(\{\phi_n(x)\}\)
2-point boundary value problems

on $[0, 1] \times (0, T)$:

$$u_t = u_{xxx}, \quad u(x, 0) = u_0(x), \quad 3 \text{ b’dary cond’s (?)}$$

Separate variables, and use eigenfunctions of

$$S = i \frac{d^3}{dx^3} \text{ on } D = \{ f \in C^\infty([0, 1]) : f \text{ satisfies 3 bc’s} \} \subset L^2[0, 1] ?$$

S is not generally selfadjoint (because of BC), but has infinitely many real eigenvalues λ_n, and associated eigenfunctions $\{\phi_n(x)\}$

$$\rightarrow \quad u(x, t) = \sum_n (u_0, \phi_n)e^{i\lambda_n t} \phi_n(x) ?$$
Evolution problems with time-dependent boundaries, multiple point boundary conditions or interfaces

The heat conduction problem for a single rod of length $2a$ between two semi-infinite rods

$u_t^L = \sigma_L^2 u_{xx}^L$ $u_t^M = \sigma_M^2 u_{xx}^M$ $u_t^R = \sigma_R^2 u_{xx}^R$

The heat equation for three finite layers

$u_t^L = \sigma_L^2 u_{xx}^L$ $u_t^M = \sigma_M^2 u_{xx}^M$ $u_t^R = \sigma_R^2 u_{xx}^R$

....given initial, boundary and interface conditions

(More generally, heat distribution on a graph)
Another type of linear problems: elliptic PDEs

\[\Delta u + 4\beta^2 u = 0, \quad x \in \Omega, \quad u = f \text{ on } \partial\Omega \]

where \(\Omega \subset \mathbb{R}^d \) is a simply connected, convex domain,
\(\beta = 0 \quad \text{Laplace} \)
\(\beta \in i\mathbb{R} \quad \text{Modified Helmholtz} \)
\(\beta \in \mathbb{R} \quad \text{Helmholtz} \)

(Largely open) questions:
- Effective closed form solution representation
- Characterization of the spectral structure
- Generalization to non-convex or multiply-connected domains

Motivation: solving nonlinear integrable equations of elliptic type, e.g.
\[u_{xx} + u_{yy} + \sin u = 0, \quad x, y \in \Omega \]
Nonlinear integrable evolution PDEs

Integrable PDEs: \sim ”PDEs with infinitely many symmetries”

NLS, KdV, sine-Gordon, elliptic sine-Gordon,…

IST: \sim a nonlinear integral (Fourier) transform

The key ingredients

(1): **Lax pairs** formulation of (integrable) PDEs

(Lax, Zakharov, Shabat 1970’s)

(2): **Riemann-Hilbert** formulation of integral transforms

(Fokas-Gelfand 1994)
The reconstruction of a (sectionally) analytic function from the prescribed jump across a given curve

Given
(a) a contour $\Gamma \subset \mathbb{C}$ that divides \mathbb{C} into two subdomains Ω^+ and Ω^-
(b) a scalar/matrix valued function $G(\lambda)$, $\lambda \in \Gamma$

find $H(z)$ analytic off Γ (plus normalisation - e.g. $H \sim 1$ at infinity):

$$H^+(\lambda) = H^-(\lambda) G(\lambda) \quad (\lambda \in \Gamma); \quad H^\pm(\lambda) = \lim_{z \to \Gamma^\pm} H(z)$$

$\Omega^+ = \mathbb{C}^+$
$\Omega^- = \mathbb{C}^-$

or

$\Omega^+ = \mathbb{C}^+
\Omega^- = \mathbb{C}^-$
Example: The ODE

$$\mu_x(x, \lambda) - i\lambda \mu(x, \lambda) = u(x), \quad \lambda \in \mathbb{C}$$

encodes the Fourier transform

direct transform: via solving the ODE for $\mu(x, \lambda)$ *bounded in λ*

inverse transform: via solving a RH problem
Example: The ODE

\[\mu_x(x, \lambda) - i\lambda \mu(x, \lambda) = u(x), \quad \lambda \in \mathbb{C} \]

encodes the Fourier transform

direct transform: via solving the ODE for \(\mu(x, \lambda) \) \textit{bounded in} \(\lambda \)

inverse transform: via solving a RH problem

\[\mu^+ = \int_{-\infty}^{x} e^{i\lambda(x-y)} u(y) dy, \quad \lambda \in \mathbb{C}^+; \quad \mu^- = \int_{\infty}^{x} e^{i\lambda(x-y)} u(y) dy, \quad \lambda \in \mathbb{C}^- \]

\[\implies \text{for } \lambda \in \mathbb{R} \quad (\mu^+ - \mu^-)(\lambda) = e^{i\lambda x} \hat{u}(\lambda) \quad \text{DIRECT} \]
Given $\hat{u}(\lambda)$, $\lambda \in \mathbb{R}$, a function μ analytic everywhere in \mathbb{C} except the real axis is the solution of a RH problem (via Plemelj formula):

$$\mu(\lambda, x) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{i\zeta x} \hat{u}(\zeta)}{\zeta - \lambda} d\zeta$$

$$\Rightarrow u(x) = \mu_x - i\lambda \mu = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\zeta x} \hat{u}(\zeta) d\zeta, \ x \in \mathbb{R}$$
The ODE $\mu_x - i\lambda \mu = u(x)$ encodes the Fourier transform

Same idea, but use a matrix-valued ODE

$$M_x + i\lambda [\sigma_3, M] = UM, \quad M(x, \lambda) \text{ a } 2 \times 2 \text{ matrix},$$

$$U = \begin{pmatrix} 0 & u(x) \\ \pm \bar{u}(x) & 0 \end{pmatrix}, \quad \sigma_3 = \text{diag}(1, -1), \quad [\sigma_3, M] = \sigma_3 M - M\sigma_3$$

Direct problem: given U find M solving the ODE above,

$$M \sim I \text{ as } \lambda \to \infty.$$

Then M is analytic everywhere off \mathbb{R}, and one can compute its jump across the real line
IST - the inverse transform

Inverse problem: Given the curve (\mathbb{R}) and the jump across it, find

$$M: M \sim I + O \left(\frac{1}{\lambda} \right) \text{ as } \lambda \to \infty$$

The matrix M is the (unique) solution of the associated matrix-valued (multiplicative) **Riemann-Hilbert problem** on \mathbb{R}.

\implies find u as

$$u(x) = 2i \lim_{|\lambda| \to \infty} (\lambda M_{12}(x, \lambda),$$

(linear case: $\mu \sim iu/\lambda$ as $\lambda \to \infty$)

IST: a nonlinear Fourier transform
Lax pair formulation: the key to integrability of PDEs

Example: nonlinear Schrödinger equation

\[iu_t + u_{xx} - 2u|u|^2 = 0 \iff M_{xt} = M_{tx}, \quad U = \begin{pmatrix} 0 & u(x) \\ u(x) & 0 \end{pmatrix} \]

\[
\begin{cases}
M_x + i\lambda[\sigma_3, M] = UM \\
M_t + 2i\lambda^2[\sigma_3, M] = (2\lambda U - iU_x\sigma_3 - i|u|^2\sigma_3)M
\end{cases}
\]

(\(M\) a 2 × 2 matrix; \(\sigma_3 = \text{diag}(1, -1)\); \([\sigma_3, M] = \sigma_3 M - M\sigma_3\))

Given this Lax pair formulation:

- find \(M\) (bdd in \(\lambda\)) from 1st ODE + time evolution of \(M\) is linear
 \(\rightarrow\) solve for \(M(\lambda; x, t)\)
- then use RH to invert and find an expression for \(u\):

\[
u(x, t) = 2i \lim_{|\lambda| \to \infty} (\lambda M_{12}(\lambda; x, t))\]
Back to linear PDEs

Linear (constant coefficient) PDE in two variables → **Lax pair formulation**

PDE as the *compatibility condition of a pair of linear ODEs*

Example: linear evolution problem

\[
\begin{align*}
 u_t + u_{xxx} &= 0 \iff \mu_{xt} = \mu_{tx} \quad \text{with} \quad \mu : \left\{ \begin{array}{l}
 \mu_x - i\lambda \mu = u \\
 \mu_t - i\lambda^3 \mu = u_{xx} + i\lambda u_x - \lambda^2 u
 \end{array} \right.
\end{align*}
\]

Main idea: derive a transform pair (via RH) from this **system** of ODEs

equivalently, *divergence form* (classical for elliptic case)

\[
\begin{align*}
 u_t + u_{xxx} &= 0 \iff [e^{-i\lambda x - i\lambda^3 t} u]_t - [e^{-i\lambda x - i\lambda^3 t} (u_{xx} + i\lambda u_x - \lambda^2 u)]_x = 0
\end{align*}
\]
Unified (Fokas) Transform:

system of ODEs (Lax pair) \rightarrow RH problems \rightarrow integral transform inversion

1: Integral representation

a complex contour representation - involves all boundary values of the solution

2: Global relation - *the heart of the matter for BVP*

compatibility condition *in spectral space* (the λ space), involving transforms of all boundary values
The role of the global relation

Invariance + analyticity properties of the global relation → representation only in terms of the given initial and boundary conditions

Always possible for

- linear evolution case
- linear elliptic case on symmetric domains
- ”linearisable” nonlinear integrable case
 effective, explicit integral representation of the solution

However, even if it is not possible to derive an explicit representation, the global relation yields an additional set of relations and information about the solution
Example when we can obtain an explicit final answer

\[u_t + u_{xxx} = 0, \quad u(x, 0) = u_0(x), \quad u(0, t) = u_1(t) \]

After exploiting the global relation and its analyticity/invariance properties:

\[
\begin{align*}
 u(x, t) &= \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\lambda x + i\lambda^3 t} \hat{u}_0(\lambda) d\lambda \\
 &+ \frac{1}{2\pi} \int_{\partial D^+} e^{i\lambda x + i\lambda^3 t} \left[\omega \hat{u}_0(\omega \lambda) + \omega^2 \hat{u}_0(\omega^2 \lambda) - 3\lambda^2 \tilde{u}_1(\lambda) \right] d\lambda
\end{align*}
\]

\[
\tilde{u}_1(\lambda) = \int_0^T e^{-i\lambda^3 s} u_1(s) ds, \quad \omega = e^{2\pi i/3}
\]

(\partial D^+ = \{ \lambda \in \mathbb{C}^+ : \text{Im}(\lambda^3) = 0 \})
Example - the global relation

\[\tilde{f}_2(\lambda^3) + i\lambda \tilde{f}_1(\lambda^3) - \lambda^2 \tilde{f}_0(\lambda^3) = \hat{u}_0(\lambda) - e^{-i\lambda^3 t} \hat{u}(\lambda, t), \; \lambda \in \mathbb{C}^- \]

with

\[\tilde{f}_2(\lambda^3) + i\lambda \tilde{f}_1(\lambda^3) - \lambda^2 \tilde{f}_0(\lambda^3) = \]

\[= \int_0^T e^{-i\lambda^3 s} u_{xx}(0, s) ds + i\lambda \int_0^T e^{-i\lambda^3 s} u_x(0, s) ds - \lambda^2 \int_0^T e^{-i\lambda^3 s} u(0, s) ds \]

Important general facts:
(1) \(\tilde{f}_i \) are invariant for any transformation that keeps \(\lambda^3 \) invariant
(2) terms involving \(\hat{u}(\lambda, t) \) are analytic inside the domain of integration \(D^+ \)
Numerical application (Flyer, Fokas, Vetra, Shiels)

Evaluation of the integral representation via \textit{contour deformation} (to contour in bold) and \textit{uniform convergence} of the representation
Heat interface problem (Deconinck, P, Shiels)

heat flow through two walls of semi-infinite width - explicit solution:

\[
\begin{align*}
 u^L(x, t) &= \gamma^L + \frac{\sigma_R(\gamma^R - \gamma^L)}{\sigma_L + \sigma_R} \left(1 - \text{erf} \left(\frac{x}{2 \sqrt{\sigma^2_L t}} \right) \right) \\
 &\quad + \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i k x - (\sigma_L k)^2 t} \hat{u}_0^L(k) dk + \int_{\partial D^-} \frac{\sigma_R - \sigma_L}{2\pi(\sigma_L + \sigma_R)} e^{i k x - (\sigma_L k)^2 t} \hat{u}_0^L(-k) dk \\
 &\quad - \int_{\partial D^-} \frac{\sigma_L}{\pi(\sigma_L + \sigma_R)} e^{i k x - (\sigma_L k)^2 t} \hat{u}_0^R(k \sigma_L / \sigma_R) dk,
\end{align*}
\]

\[
\begin{align*}
 u^R(x, t) &= \gamma^R + \frac{\sigma_L(\gamma^L - \gamma^R)}{\sigma_L + \sigma_R} \left(1 - \text{erf} \left(\frac{x}{2 \sqrt{\sigma^2_R t}} \right) \right) \\
 &\quad + \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i k x - (\sigma_R k)^2 t} \hat{u}_0^R(k) dk + \int_{\partial D^+} \frac{\sigma_R - \sigma_L}{2\pi(\sigma_L + \sigma_R)} e^{i k x - (\sigma_R k)^2 t} \hat{u}_0^R(-k) dk \\
 &\quad + \int_{\partial D^+} \frac{\sigma_R}{\pi(\sigma_L + \sigma_R)} e^{i k x - (\sigma_R k)^2 t} \hat{u}_0^L(k \sigma_R / \sigma_L) dk.
\end{align*}
\]
Numerical evaluation of the solution - heat interface problem

Figure: Results for the solution with $u^L_0(x) = x^2 e^{(25)^2 x}$, $u^R_0(x) = x^2 e^{-(30)^2 x}$ and $\sigma_L = .02$, $\sigma_R = .06$, $\gamma^L = \gamma^R = 0$, $t \in [0, 0.02]$ using the hybrid analytical-numerical method of Flyer
Linear evolution problems - general result (Fokas, P, Sung)

$$u_t + iP(-i\partial_x)u = 0, \quad (P \text{ polynomial})$$

Initial Value Problem: \(x \in \mathbb{R}\)

$$u_0(x) \xrightarrow{\text{direct}} \hat{u}_0(\lambda) \xrightarrow{\text{inverse}} u(x, t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\lambda x - iP(\lambda)t} \hat{u}_0(\lambda) d\lambda$$

Boundary Value Problem: \(x \in I \subset \mathbb{R}^+\)

$$\{u_0(x), f_j(t)\} \xrightarrow{\text{direct}} \{\hat{u}_0(\lambda), \zeta(\lambda), \Delta(\lambda)\} \xrightarrow{\text{inverse}}$$

$$u(x, t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\lambda x - iP(\lambda)t} \hat{u}_0(\lambda) d\lambda + \int_{\partial D^\pm} e^{i\lambda x - iP(\lambda)t} \frac{\zeta(\lambda)}{\Delta(\lambda)} d\lambda$$

\(\partial D^\pm = \{\lambda \in \mathbb{C}^\pm : \text{Im}(P(\lambda)) = 0\}\)
Singularities in the RH data (P, Smith)

\[u_t + Su = 0, \quad x \in I \]

\[S = iP(-i\partial_x)(+ \text{ b.c.}) \]

\[u(x, t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\lambda x - iP(\lambda)t} \hat{u}_0(\lambda) d\lambda + \int_{\partial D} e^{i\lambda x - iP(\lambda)t} \frac{\zeta(\lambda)}{\Delta(\lambda)} d\lambda \]

- \(\hat{u}_0(\lambda), \zeta(\lambda) \), are transforms of the given initial and boundary conditions
- \(\Delta(\lambda) \) is a determinant (arising in the solution of the global relation) whose zeros if they exist are (essentially) the discrete eigenvalues of \(S \).
Singularities in the RH data (P, Smith)

\[u_t + Su = 0, \quad x \in I \quad \quad S = iP(-i\partial_x)(+ \text{ b.c.}) \]

\[u(x, t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\lambda x - iP(\lambda)t} \hat{u}_0(\lambda) d\lambda + \int_{\partial D} e^{i\lambda x - iP(\lambda)t} \frac{\zeta(\lambda)}{\Delta(\lambda)} d\lambda \]

- \(\hat{u}_0(\lambda), \zeta(\lambda) \), are transforms of the given initial and boundary conditions
- \(\Delta(\lambda) \) is a determinant (arising in the solution of the global relation) whose zeros if they exist are (essentially) the discrete eigenvalues of \(S \).

Uniformly convergent representation, in contrast to not uniformly (slow) converging real integral/series representation
Singularities in the RH data (P, Smith)

\[u_t + Su = 0, \quad x \in I \]
\[S = iP(-i\partial_x)(+ \text{ b.c.}) \]

\[
 u(x, t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\lambda x - iP(\lambda)t} \hat{u}_0(\lambda) d\lambda + \int_{\partial D} e^{i\lambda x - iP(\lambda)t} \frac{\zeta(\lambda)}{\Delta(\lambda)} d\lambda
\]

- \(\hat{u}_0(\lambda), \zeta(\lambda) \), are transforms of the given initial and boundary conditions
- \(\Delta(\lambda) \) is a determinant (arising in the solution of the global relation) whose zeros if they exist are (essentially) the discrete eigenvalues of \(S \).

Uniformly convergent representation, in contrast to not uniformly (slow) converging real integral/series representation

If the associated eigenfunctions form a basis (say the operator\(+bc\) is self-adjoint...), this representation is equivalent to the series one.
$$u_t = u_{xx}, \quad u(x, 0) = u_0(x), \quad u(0, t) = u(1, t) = 0$$

$$2\pi u(x, t) = \int_{\mathbb{R}} e^{i\lambda x - \lambda^2 t} \hat{u}_0(\lambda) d\lambda$$

$$- \int_{\partial D^+} e^{i\lambda x - \lambda^2 t} \frac{e^{i\lambda} \hat{u}_0(-\lambda) - e^{-i\lambda} \hat{u}_0(\lambda)}{e^{-i\lambda} - e^{i\lambda}} d\lambda$$

$$- \int_{\partial D^-} e^{i\lambda(x-1) - \lambda^2 t} \frac{\hat{u}_0(\lambda) - \hat{u}_0(-\lambda)}{e^{-i\lambda} - e^{i\lambda}} d\lambda.$$

$$\lambda_n = \pi n \text{ zeros of } \Delta(\lambda) = e^{-i\lambda} - e^{i\lambda}$$

Using Cauchy+residue calculation →

$$u(x, t) = \frac{2}{\pi} \sum_n e^{-\lambda_n^2 t} \sin(\lambda_n x) \hat{u}_0^s(\lambda_n)$$ sine series
A very different example: the PDE $u_t = u_{xxx}$

$I = [0, 1]$: zeros of $\Delta(\lambda)$ are an infinite set accumulating only at infinity; (asymptotic) location is given by general results in complex analysis, and depends crucially on the boundary conditions (P-Smith)

boundary conditions: $u(0, t) = u(1, t) = 0$, $u_x(0, t) = \beta u_x(1, t)$
A very different example: the PDE $u_t = u_{xxx}$

$I = [0, 1]$: zeros of $\Delta(\lambda)$ are an infinite set accumulating only at infinity; (asymptotic) location is given by general results in complex analysis, and depends crucially on the boundary conditions (P-Smith)

boundary conditions: $u(0, t) = u(1, t) = 0$, $u_x(0, t) = \beta u_x(1, t)$

- $\beta = -1$: the zeros are on the integration contour \rightarrow residue computation (with no contour deformation)
A very different example: the PDE $u_t = u_{xxx}$

$I = [0, 1]$: zeros of $\Delta(\lambda)$ are an infinite set accumulating only at infinity; (asymptotic) location is given by general results in complex analysis, and depends crucially on the boundary conditions (P-Smith)

boundary conditions: $u(0, t) = u(1, t) = 0$, $u_x(0, t) = \beta u_x(1, t)$

▶ $\beta = -1$: the zeros are on the integration contour \to residue computation (with no contour deformation)

▶ $-1 < \beta < 0$: the zeros are asymptotic to the integration contour \to residue computation
A very different example: the PDE $u_t = u_{xxx}$

$I = [0, 1]$: zeros of $\Delta(\lambda)$ are an infinite set accumulating only at infinity; (asymptotic) location is given by general results in complex analysis, and depends crucially on the boundary conditions (P-Smith)

boundary conditions: $u(0, t) = u(1, t) = 0, \quad u_x(0, t) = \beta u_x(1, t)$

- $\beta = -1$: the zeros are on the integration contour \rightarrow residue computation (with no contour deformation)
- $-1 < \beta < 0$: the zeros are asymptotic to the integration contour \rightarrow residue computation
- $\beta = 0$: the contour of integration cannot be deformed as far the asymptotic directions of the zeros \implies the underlying differential operator does not admit a Riesz basis of eigenfunctions
More general spectral decomposition of differential operators: augmented eigenfunctions

\[u_t + \partial^n_x u = 0, \ x \in [0, 1] + \text{ initial and homogeneous boundary conditions} \]

\[u(x, t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\lambda x - (i\lambda)^n t} \hat{u}_0(\lambda) d\lambda + \int_{\Gamma} e^{i\lambda x - (i\lambda)^n t} \frac{\zeta(\lambda; u_0)}{\Delta(\lambda)} d\lambda \]

\(F(f)(\lambda) = \frac{\zeta(\lambda; f)}{\Delta(\lambda)} \) is the family of augmented eigenfunctions of \(S = \partial^n_x \) on \(\{ f \in C^\infty : f \text{satisfies the boundary conditions}\} \subset L^2 \) in the sense that

\[F(Sf)(\lambda) = \lambda^n F(f)(\lambda) + R(f)(\lambda) : \int_{\Gamma} e^{i\lambda x} \frac{R(f)}{\lambda^n} d\lambda = 0. \]
Elliptic problems in convex polygons (Ashton, Fokas, Kapaev, Spence)

\[u_{z\bar{z}} + \beta^2 u = 0, \quad z = x + iy \in \Omega \text{ convex polygon} \]

Global relation (\sim Green’s theorem in spectral space):

\[
\int_{\partial\Omega} e^{-i\lambda z + \frac{\beta^2}{i\lambda} \bar{z}} \left[(u_z + i\lambda u)dz - (u_{\bar{z}} - \frac{\beta^2}{i\lambda} u)d\bar{z} \right] = 0
\]
Elliptic problems in convex polygons (Ashton, Fokas, Kapaev, Spence)

\[u_{z\bar{z}} + \beta^2 u = 0, \quad z = x + iy \in \Omega \text{ convex polygon} \]

Global relation (\sim Green’s theorem in spectral space):

\[
\int_{\partial \Omega} e^{-i\lambda z + \frac{\beta^2}{i\lambda} \bar{z}} \left[(u_z + i\lambda u)dz - (u_{\bar{z}} - \frac{\beta^2}{i\lambda} u)d\bar{z} \right] = 0
\]

It characterises rigorously the classical Dirichlet to Neumann map:

given \(u|_{\partial \Omega} \), find \(\partial_n u|_{\partial \Omega} \)

(series of results by Ashton, in \(\mathbb{R}^n \) and with weak regularity)
Elliptic problems in convex polygons (Ashton, Fokas, Kapaev, Spence)

\[u_{z\bar{z}} + \beta^2 u = 0, \quad z = x + iy \in \Omega \text{ convex polygon} \]

Global relation (\sim Green's theorem in spectral space):

\[
\int_{\partial\Omega} e^{-i\lambda z + \frac{\beta^2}{i\lambda} \bar{z}} \left[(u_z + i\lambda u)dz - (u_{\bar{z}} - \frac{\beta^2}{i\lambda} u)d\bar{z} \right] = 0
\]

It characterises rigorously the classical Dirichlet to Neumann map:

given \(u|_{\partial\Omega} \), find \(\partial_n u|_{\partial\Omega} \)

(series of results by Ashton, in \(\mathbb{R}^n \) and with weak regularity)

Theoretical basis for a class of competitively efficient numerical schemes - analogue of boundary element methods but in spectral space (Fulton, Fornberg, Smitheman, Iserles, Hashemzadeh, ...)

b.pelloni@reading.ac.uk

SANUM 2016
Characterising the eigenvalues/eigenfunction of the Laplacian operator $= \text{solving the Helmholtz equation above (even in } \mathbb{R}^2\text{) is an important and difficult question with many applications:}

spectral characterization of domain geometry, billiard dynamics, ergodic theory.....

One possible strategy is based on the analysis of the global relation for the explicit asymptotic characterization of eigenvalues and eigenfunctions of the (Dirichlet) Laplacian on a given convex polygon.
Characterising the eigenvalues/eigenfunction of the Laplacian operator = solving the Helmholtz equation above (even in \mathbb{R}^2) is an important and difficult question with many applications: spectral characterization of domain geometry, billiard dynamics, ergodic theory.....

One possible strategy is based on the analysis of the global relation for the explicit asymptotic characterization of eigenvalues and eigenfunctions of the (Dirichlet) Laplacian on a given convex polygon.

Eigenvalues and eigenfunctions have been computed explicitly for all Robin boundary conditions by Kalimeris and Fokas using the UT (known since Lamé for Dirichlet conditions)

Recent preliminary result: rational isosceles triangle, large eigenvalues
Numerical evaluation of eigenvalues

A computation based on a numerical method for evaluating the Dirichlet to Neumann map from the global relation - condition number "spikes" of the matrix approximating the of the D-to-N operator correspond to eigenvalues

(Ashton and Crooks)
UT inspired more general "elliptic" transforms

UT → representation of an arbitrary analytic function in a polygon:

\[u_z = \frac{1}{2\pi} \sum_{k=1}^{n} \int_{l_k} e^{i\lambda z} \rho_k(\lambda) d\lambda, \quad l_k = \{ \lambda : \arg(\lambda) = -\arg(z_k - z_{k+1}) \}, \]

\[\rho_k(\lambda) = \int_{z_{k+1}}^{z_k} e^{-i\lambda z} u_z(z) dz, \quad (k = 1, \ldots, n), \quad \sum_k \rho_k(\lambda) = 0. \]

can be extended to more general domains (Crowdy)

- polycircular domains, also non-convex
- domains with a mixture of straight and circular edges
- multiply connected circular domains

→ important applications to fluid dynamics problem
 (bubble mattresses, biharmonic problems..)
Boundary value problems for nonlinear integrable PDEs

Using the fact that integrable PDE have a Lax pair formulation, as in the linear case one obtains

- integral representation (characterized implicitly by a linear integral equation)
- global relation

The global relation can be solved as in the linear case for a large class of boundary conditions, called linearisable

A long list of contributors:
Fokas, Its (NLS), Shepelski, Kotlyarov, Boutet de Monvel (periodic problems), Lenells (general bc and periodic problems), P (elliptic sine-Gordon), Biondini (solitons).......
Unified Transform Gateway (maintained by David A Smith): http://unifiedmethod.azurewebsites.net/