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Structure of talk

A model elliptic problem: weak or variational formulations

The Galerkin finite element method: analysis and approximations

Discontinuous Galerkin (DG) formulations

Near-incompressibility in elasticity



Model problem: deformation of a membrane

Minimization of an “energy” f

min J(v) J(v) = %/Q|Vv|2da:—/9fvdm

(Y

The solution wu satisfies the weak problem

/Vu-Vvd:E:/ffudx
Q Q

for all functions v which satisfy » = 0 on the boundary

Sufficiently smooth w satisfies the Poisson equation and boundary condition

—Au = f on () (92?1, 82’&

u = 0 on I




The membrane problem, continued

min J (v /|V’U|2 da:—/fv dx
veV

/Vu-Vvda::/fvdx
Q Q

Define the bilinear forma(-, -) and linear functional ¢(-)
a:VxV =R, a(u,v):/Vu-V'de
Q

0:V =R, E('U):/fvdx
Q

Thus the above problem is

{)Iél‘I/l za(v,v) — £(v)

or equivalently a(u,v) = £(v) YveV



Interlude: the Sobolev spaces ™ ({2)

Built from the Lebesgue space of square-integrable functions:
L?(Q) = {v ; / v? dr = ||v||3 < oo}
Q

Define, for integer m > 0,

H™(Q) ={v : D* € L*(Q), |a|] <m}

Seminorm  |y|? = Z / | D%|? dx
a=m Q

Hilbert space with induced norm lv]l7, = Z ol

la|<m
eg. [vflf = /Q o + (5—;)2 i (5—;)2] da

We will also need HJ(Q) = {v e H'(Q) : v=0o0nT}



Well-posedness of the variational problem

géi‘% ta(w,w) — (w)

This problem has a unique solution if:

W is a closed subspace of a Hilbert space H

= ais coercive or W-elliptic: ~ a(w,w) > al|wl|%

a is continuous: la(w, 2)| < M||w|| gl||z]|g

¢ is continuous: 0(z)| < C|z||u

The model problem has a unique solution in HJ ()



Finite element approximations

Aim: to pose the variational problem on a finite-dimensional subspace V" c V

1. Partition the domain into subdomains or finite elements

2. Construct a basis {¢;}i; for V" comprising continuous functions that are
polynomials on each element

portion of hip replacement:
physical object and finite element model



The Galerkin finite element method

Pi

3. The piecewise-polynomial approximations can
be written

up = Zgoz(a:)uz = pu
vp = Z wi(x)v; = PV

4. Substitute in the weak formulation a(up,vy) = ¢(vy) to obtain

> vila(wi, p)ui — L)) = 0 > _aleip)ui = L)) Ku=F

(a) Finite element mesh (b) Finite element solution (c) Finite element solution



Convergence of finite element approximations

& Construct V, ¢ V' and seek uy, € V}, such that for all v, € Vj,

a(up,vy) = £(vp) for all vy, € V), v Ku=F

® hp =diameter of T mesh size h = max hr
TeT hr

& Define the error by u — up : under what conditions do we have convergence in the

sense that

® Orthogonality of the error:  a(u — up,v,) = a(u,vy) — alup,vy)
t(vn) = £(vn)
= 0




An a priori estimate

allu —uplly < alu —up,u—up) (7-ellipticity)
= a(u—up,u —vp) + a(u — w0, — up)
< _ _
< alu—up,u—up) (orthogonality of error)
< Mlu—uplv |v—ovallv (continuity)

Céa’s lemma

Strategy for obtaining error bound: a) choose v}, to be the interpolate of winV},
b) use interpolation error estimate to bound actual error




Finite element interpolation theory

Ciarlet and Raviart Arch. Rat. Mech. Anal. 1972

hr = diameter of T

pr = sup{diameter of B; B a ball contained in T'}

or = hr/pr

Let 7 be a triangulation of a bounded domain €2 with polygonal boundary:

Q= UperT

Define the mesh size h = max hr
TeT

A family of triangulations is regular as 7 — 0 if there exists c > 0 such that

or <o forall T € Ty,



Finite element interpolation theory

(Local estimate) For a regular triangulation with v € H*™Y(T), k+1>m

and the interpolation operator = which maps functions to
polynomials of degree <k,

[0 = TVl < CHF " 0l

(Global estimate) Let 7 be a uniformly regular triangulation of a polygonal
domain. Define

Vi, = {’Uh c C(Q) : ’Uh|T c Pk;} NV
1T, : H*(Q) — V4, (global interpolator)

h = max hT
T

lv = Mpollme < CREF Mol m=0,1



Convergence of finite element approximations

Hu — uhHV < C infthVh Hu — UhHV

VAN

CHU — Hhu||v

< Chmin(k,r—l) |U’r

So for the simplest approximation, by piecewise-linear simplices,

lv = unlly < Chluls

for the second-order elliptic equations

Could use piecewise-quadratic simplices (k = 2) in which case

lu—unlly = O(n?)
- provided that the solution is smooth enough to belong to H*()!



Discontinuous Galerkin (DG) methods



Discontinuous Galerkin (DG) methods

* Drop the condition of continuity
* So Vi, Q Vv

* A member v, € V}, is now a polynomial on each element, but not continuous
across element boundaries

* An immediate consequence: much greater number of degrees of freedom

=
= /V;
@ oS o
K, Ko
N2<—




What do solutions look like?

1‘\\\\\\ i

un\

0.08

Pl
i

0.06 § “‘ ' \\\ \ 0.06
s

0.04

0.02

(a) Conforming approximation (b) Discontinuous Galerkin approximation

(c) Discontinuous Galerkin approximation with a
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Why bother with DG?

Can accommodate hanging nodes

Useful in adaptive mesh refinement




Efficiency and accuracy

Conforming ——~—
,,,,, ‘,,,,,

ten Eyck and Lew 2010
(nonlinear elasticity)

Displacement Error (m)

01 1 1 L J
1 10 100 1000 10000

Total DOF

Figure 6. Plot of the L’-norm over % of the error in the displacement field as a function of

the total number of degrees of freedom for the test in Section 6.1. Curves are shown for the

discontinuous Galerkin method as well as for the conforming one. Remarkably, the two curves

overlap, indicating that both methods provide the same accuracy for the same computational
cost, i.e. for this example they are equally efficient.



Our objective

* For the problem of deformations of elastic bodies DG methods show
good behaviour for near-incompressibility with the use of low-order
triangles in two dimensions, and tetrahedra in three

* DG with quadrilaterals and hexahedra less straightforward:
— poor behaviour, including locking, for low-order approximations

*  We show why this is so, and propose some remedies



First, review derivation of heat equation

q = heat flux vector

Heat equation: Balance of energy divg = s
s = heat source
+
Fourier’s law qg=—kVv

give the (steady) heat equation ~ —k AV =s



Governing equations for elasticity

displacement vector u

stress tensor or matrix o

Elasticity: Equilibrium —dive = f
+

Hooke’s law o= Adivu + (Vu + [Vu]')

give Navier’s equation —Au =—[Au+ (1 4+ N)Vdivu] = f



Equivalent to minimization problem

u

Define  a(u,v) = / [Vsu: Vv + (1 4+ N)divudive] dx
Q

E(v):/Qf-vdx

Then the minimization problem is {)%1‘51 sa(v,v) — £(v)
or equivalently a(u,v) = £(v)

which has a unique solution in V= [HJ ()]

Furthermore (Brenner and Sung 1992) the solution satisfies

minJ(u):%/ Vsul? + (14 ) (diva)? dV—/f-udV
Q Q

Vsu = %[Vu + (V)]
1 <8UZ au]'
+

(vsu)i‘j - 5 833j 8331

)

we QP lullg: + M divalm < Clf]l.:




Locking

The use of low-order elements leads to a non-physical solution in the
incompressible limit

a(u,v) = / Vsu : Viv+ (1 + Ndivudivo] do
Q

A — 00 divu — 0
N ° °
5
o |
K] p Q1
Y
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O
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We explore the use of DG methods as a remedy for locking



DG formulation: some definitions

Jumps and averages:

on an interior edge £ of element 17,

v =v" -nT v -n",

[v]=vt@nT+v @n", {v}=3@w"+v")

[rfl=7n"+71n", {r}=3(T+77)

+

For example [7] = (77 — 77 )n™

On an edge that forms part of the boundary, [v] =v&®n
{t}=mn



Setting it up

—Au=—[Au+ (1+ N Vdivy] = f

\ 4

VO
—div o

o = Mdivu + (Vu + [Vu]!)

* take the inner product with a test function
* integrate, and integrate by parts

—/diva-vdV:/f-vdV
Q 1%

Consider the left-hand side:

/diva-vdV:Z/diva-vdV
Q o JT

diveo-vdV = / on-v ds — /O'IVS’UdV
J 2 or 2);



Thus weak equation is now

—Z/ an-vds+Z/a:VSUdV:/f-vdV
T Jor T JT Q

1,

E
T

Next, we need the “magic formula”

;LTv-ands:%:/Eﬂv]]:{a}ds%—Z/E‘ {v}-[o] ds

Eint it




This gives
> [bltey a3 [ @ lolast [ o vwar= [ fooav

Since the exact solution is smooth (u € [H?%(02)]%) and the stress is
continuous we can assume that

[o] =0

which leaves

—Z[E[[‘v]]:{a}ds+/Qa:vsvdV:/Qf.vdv




Exploiting again the smoothness of the exact solution we can add a term to

symmetrize the problem: ]
—Z/ {o(u }ds—Z/ v)}ds

+Z/0':V3vdV:/f-vdV
=z JQ Q

Finally, we may need to stabilize the problem: this gives us the
symmetric interior penalty (SIP) formulation (Douglas and Dupont 1976)

—Z/ {o(u }ds—Z/ {o(v }ds—HcZ/ hE
+Z/Qa:v3vdV:/Qf.vdv



The DG formulation

Vi, = {'vh : vy, € [LQ(Q)]d,vhkp € P (T) or Ql(T)}

P (T): vp=ap+ a1x+ ay

Q1(T): vp=ag+ a1z + ay + asxy [:]




Vi, ={vn : vy € LX), vp|r € P(T) or Q:(T)}

CLh(’U,h, ’Uh) — K(vh)

ah(u, ’U)

T

>,

o(u) : Vv dV+QZ/E[[u]] ; {a('v)}ds—Z/E[[v]] - {o(u)} ds

+kZE:/E%[[u]][['v]]: Fovdv

(41
—1
. 0

Nonsymmetric Interior Penalty Galerkin (NIPG)
RIVIERE & WHEELER 1999, 2000; ODEN, BABUSKA & BAUMANN 1998

Symmetric Interior Penalty Galerkin (SIPG)
DOUGLAS & DUPONT 1976, ARNOLD 1982, HANSBO & LARSON 2002

Incomplete Interior Penalty Galerkin (IIPG)
DAWSON, SUN AND WHEELER 2004



DG with triangles is uniformly convergent

WIHLER 2002

DGFEM on graded mesh
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Some computational results with quads appear to show
locking-free behaviour ...

Fig. 8. Tensile stress contours (g, > 0.15 MPa) of DG solutions of beam problem with Poisson’s ratio 0.499. (a) OBB; (b) SIPG; 6, = 30; (c) NIPG; 6, = 10; and (d) IIPG; 5, = 50.

Liu, WHEELER AND DAWSON 2009

These authors report good results using all methods



... but not so in other cases

I

Grieshaber, McBride and R. (2015)
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We know that DG works for simplicial elements
Some authors report good results for quads
We find locking for a simple example

What's going on?



Let’s see why DG with triangles works

an(u,v) =) /TU(U):VSUJFQZ/E[[U]] {o(v)} - Z/E{O’(u)} o]

TeTh Eel’ Eel
> [ bl [+ on Y ol s el

(note the use of two stabilization terms)

= 2 Lz; [VavodoY [l v -3 [ (Fu: ]+ 3 / %[[uﬂ:[[v]]]

Eecl EeT

+A

+ 2; /T (div w)(dive) +6 ) [E [w] : {(divo)I} — > [E {(divu)I} : [v] ds
TETh (|) Eer (”) EeT (|||)

i Y oo [l [[v]]]
(V)



Error analysis for linear triangles: NIPG

Approximation error € = U — Uy, ITu = interpolant of w

—u—Ilu + Illu—uy
H,—/ \ ~ _

77 £

interpolation error

Use Crouzeix-Raviart interpolant: linear on triangles,
continuous at midpoints of edges

Properties: / (u—Tlu) -nds=0
E

/ div(u — Iu) dV =0
T



e = n+¢§
n = wu-—Ilu

& = Iu—uy

EcVy, = divg, o(&) const.

A-terms in error bound can be handled as follows: for example,
(1) = AZ/(divn)(divs) ds = AZdiv&/ divny ds =0
T /T 7 T

to give eventually

lelbe < Ch? (llullaga) + A%l divullf: o

Use estimate ||w|/ g2 + Al[divul|lzr < Cf|f|| L2 to get uniform convergence



Convergence analysis for quadrilaterals

First need to construct a suitable interpolant 1Iu € V),

As before e =UuU—up

—u—Ilu + Ilu-—uy
H/—/ \ ~ V

"7 3

and 1lu must satisfy

[E(u—Hu)-ndszO
[ =Tt nds =0

/ (u—Tu) -nds=0
oT



The interpolant

Inspired by DouciAs, SANTOS, SHEEN & YE 1999; CIA, DOUGLAS, YE 1999:

Construct interpolant with span

{ 1, z,y,0(x) + k(y) }

Lz, y, k(z) + 0(y)

0(x) = 3z° — 10x* + 72°
k(x) = —32% + 5zt

Define Ilu as orthogonal projection on element



Error bound

Eventually get

& —unllpe < €D B3 (lullfe i) + X lulle ey + 220 divulf )
T

so not possible to bound A-dependent term
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Example: square plate

BRENNER SINUM 1993
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1
sin 2y (—1 + cos 2mx) + T
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1
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sin T sin 7Ty

logih)
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A remedy: selective reduced integration (SRI)

Recall classical SRI for elasticity problem:

to overcome volumetric locking one replaces

/ (Vsuyp, : Vv, + A(divu)(dive) | dV
0 N 2

"

volumetric term

/ [Vsuh : Vv dV + A ZwT divu(xr) divo(xr)
0 T

\ . 7
-~

or underintegration of volumetric term

/ Veup : Vovp dV + A1) / (ITo div w) (I div v) dV
Q - JT

1
HodiV’U =

/ divev dV
T




Underintegration applied to (1) gives

o /E €] {divn} ds

2

o [E o [€] To {div 1y} ds
— ATl {divn) /E Iy [€] ds

_ OATIo{divn} /E €] ds = 0

Replace (V) with

bAY [ ol o] = 620 [ o] ]

= Y Tole] [ ]
= 0

But we now have to check coercivity and consistency of the modified bilinear form!



Underintegration applied to (1) gives

o /E [€]{divn} ds =~ 6 [E o [€] Mo {div ) ds
— ATl {divn) /E Iy [€] ds

_ OATIo{divn} /E €] ds = 0

Eventually get

. 1/2
an(m,€) < Cllélna ( S h3 ( Jullfe + A2ldivul?. )

<C|f]?

But we now have to check coercivity and consistency of the modified bilinear form!



Coercivity

NIPG: OK for SRI on terms (II) and (I1)
SIPG: OK for SRI on terms (11), (III), (V)
IPG: OK for SRI on terms (lI1) and (1V)

Term (Ill) when underintegrated leads to a consistency error

B, ) = A3 /E (11 {div ) r T[] — {div u) €] s

which can be controlled



Locking-free (uniformly convergent) behaviour




Q

quads with and without SRI

Square plate
DG with triangles
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Cube with prescribed body force

u1 = (cos 2wz — 1)(sin 27y sin 7z — siny sin 27z) + sinx sin 7y sinz,

1+ A

ug = (cos 2wy — 1)(sin 27z sinwz — sin 7z sin 2wx) + sinx sin 7y sin 7wz,

14+ A

1 ) ) )
SIN 7T SIN7TY SINTTZ.
1+ A 4

us = (cos 2wz — 1)(sin 2wz sin Ty — sin mx sin 27y) +



log(H1 error)
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Back to the T-bar example

LiU. WHEELER, DAWSON 2009 appeared to show good behaviour for 11IPG

3D problem but effectively plane stress (Neumann or flux-free boundary
condition) in out-of-plane direction, along ABCD

Here trea'&ed as plane strain (Dirichlet or constrained displacement) along ABCD
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Concluding remarks

 For near-incompressibility DG with quadrilateral elements is not
straightforward

* A remedy, viz. selective under-integration A-dependent edge terms, has been
proposed, analysed, and shown to converge uniformly at the optimal rate

 Arbitrary quadrilaterals: numerical experiments indicate behaviour similar to
that for rectangles. Analysis would be quite complex

 Current work: nonlinear problems; other parameter-dependent problems
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Alternative approach: P; approximation on quads

Much of the manipulations carry over, all the bounds are as before, but this time

E=1lu—u, eV, ~P; ® o uy, € P

Problematic terms:

M= or [ [efaivmyds = oA Naivn} [ €] ds

— () given properties of interpolant

But

(1V) = k>\>\i [€] [m] ds # 0 so remains a problem for SIPG and IIPG,

he Jg
but is absent for NIPG
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