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§  A model elliptic problem: weak or variational formulations 

§  The Galerkin finite element method: analysis and approximations 

§  Discontinuous Galerkin (DG) formulations  

§  Near-incompressibility in elasticity 

Structure of talk 



Minimization of an “energy” 

The solution     satisfies the weak problem 

for all functions    which satisfy             on the boundary    
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Define the bilinear form         and linear functional 

Thus the above problem is 
 
 

or equivalently 

The membrane problem, continued 
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Interlude: the Sobolev spaces 
Built from the Lebesgue space of square-integrable functions: 
 
 
 
 
Define, for integer           , 
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Hilbert space with induced norm 
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Well-posedness of the variational problem 

This problem has a unique solution if: 
 
§   W is a closed subspace of a Hilbert space H  

§   a is coercive or W-elliptic: 

§   a is continuous: 

§       is continuous:	  
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1.  Partition the domain into subdomains or finite elements 

2.  Construct a basis              for      comprising continuous functions that are 
polynomials on each element 

Finite element approximations 

{'i}Ni=1

Aim: to pose the variational problem on a finite-dimensional subspace  V h ⇢ V

V h

portion of hip replacement:  
physical object and finite element model 



3.  The piecewise-polynomial approximations can  
      be written 

 
4.   Substitute in the weak formulation                              to obtain 
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The Galerkin finite element method 



Construct        and seek               such that for all 

 

 

 

          mesh size  

 

Define the error by             : under what conditions do we have convergence in the 
sense that 

 

 
 

Orthogonality of the error:      
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Convergence of finite element approximations 
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Céa’s lemma 

Strategy for obtaining error bound: a) choose     to be the interpolate of    in  

           b) use interpolation error estimate to bound actual error   
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An a priori estimate 



Ciarlet and Raviart Arch. Rat. Mech. Anal. 1972 
 
 
 
 
 
 
 
 
 
Let     be a triangulation of a bounded domain     with polygonal boundary: 
 
 
 
Define the mesh size                           
 
 
A family of triangulations is regular as            if there exists           such that 
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Finite element interpolation theory 



(Global estimate) Let     be a uniformly regular triangulation of a polygonal 
domain. Define 

 

          

                 (global interpolator) 
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So for the simplest approximation, by piecewise-linear simplices, 
 
 

        
 
 
for the second-order elliptic equations 
 
Could use piecewise-quadratic simplices    in which case 
 
 
-- provided that the solution is smooth enough to belong to            !  
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Convergence of finite element approximations  



Discontinuous Galerkin (DG) methods 



•  Drop the condition of continuity 

•  So 

•  A member      is now a polynomial on each element, but not continuous  
    across element boundaries   
 
•  An immediate consequence: much greater number of degrees of freedom 

Vh 62 V

3.1 A discontinuous Galerkin formulation 43
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Fig. 3.5. Schematic of the jump in and average of a scalar field on the boundary between two elements in
one dimension

!η" = η1N 1 , {{η}} = η1 ,

!v" = v1 ⊗N 1 , {{v}} = v1 , (3.2)

!τ " = τ 1N 1 , {{τ}} = τ 1 .

The following identity relates the scalar product of two quantities to the products

of their jumps and averages [13]:
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Furthermore, we will also make use of the inequalities [see 11]
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where c1 and c2 are positive constants independent of hK and e denotes an edge of

K. Thus, from (3.4)1 and using 0 < he/hK ≤ 1 (see Fig. 3.3) we obtain
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Discontinuous Galerkin (DG) methods 



4.3 Implementation of the predictor–corrector solution strategy 101
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(c) Discontinuous Galerkin approximation with a
low penalty parameter

Fig. 4.9. Conforming and discontinuous Galerkin finite element approximations of the Poisson problem

We distinguish henceforth the element shape functions used to interpolate the

displacement field, denoted NA
ϕ , from those used to interpolate the internal hardening

parameter field and denoted NA
γ . The displacement field approximation, denoted uh,

is written in terms of the nodal displacements dA ∈ R
ndim as

uh(X) =
nnode∑

A=1

NA
ϕ (X)dA .

Following standard Bubnov–Galerkin finite element procedure, an arbitrary test func-

tion vh ∈ Vh is approximated from the nodal values, denoted qA, A = 1, . . . , nnode,

in the same manner as the displacement field as

What do solutions look like? 



Can accommodate hanging nodes 
 
 
 
 
 
 
 
 
Useful in adaptive mesh refinement 
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Why bother with DG? 
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(a) (b) (c)

Figure 5. Snapshots of the deformed configuration of the block at the end of the loading path (a),
and at the onset of instability (b) and (c): (a) !! = 10−2; (b) !! = 10−3; and (c) !! = 10−4 Pa/step.
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Figure 6. Plot of the L2-norm over B0 of the error in the displacement field as a function of
the total number of degrees of freedom for the test in Section 6.1. Curves are shown for the
discontinuous Galerkin method as well as for the conforming one. Remarkably, the two curves
overlap, indicating that both methods provide the same accuracy for the same computational

cost, i.e. for this example they are equally efficient.

one. A similar result has been shown in Reference [22]. This section presents the results
supporting such assertion through two qualitatively different examples.

We first studied the convergence of solutions for the example in Section 6.1, where an elastic
square block is pulled from its top surface. Only " was changed for this test, to be " = 0.45,
and again no stabilization was needed. Solutions were obtained with both the discontinuous
Galerkin and the conforming method for a number of different meshes. To compute the errors,
we used a very fine numerical solution calculated with 79 202 conforming linear triangles in
lieu of an apparently non-existent exact analytical solution. Figure 6 shows the L2-norm of the
error as a function of the total number of degrees of freedom. It should be noted that numerical
solutions with the same number of degrees of freedom furnished by each one of the methods
were necessarily computed with different meshes; the discontinuous Galerkin mesh is coarser
than the conforming one. The use of the total number of degrees of freedom is consequently a

Copyright ! 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 67:1204–1243

ten	  Eyck	  and	  Lew	  2010	  	  
(nonlinear	  elas7city)	  

Efficiency and accuracy 



 

•  For the problem of deformations of elastic bodies DG methods show 
good behaviour for near-incompressibility with the use of low-order 
triangles in two dimensions, and tetrahedra in three 

•  DG with quadrilaterals and hexahedra less straightforward:  

  – poor behaviour, including locking, for low-order approximations 

•  We show why this is so, and propose some remedies 

 

    

Our objective 



First, review derivation of heat equation 

heat flux vector	  

Heat equation:  Balance of energy 
 
 

     + 
 
 

     Fourier’s law 
 
 
give the (steady) heat equation   

div q = s
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Elasticity:    Equilibrium 
 

     + 
 

     Hooke’s law 
 
give Navier’s equation 

� = � divu+ (ru+ [ru]T )

�div� = f
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stress tensor or matrix σ	  

displacement vector u 

Governing equations for elasticity 
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Equivalent to minimization problem 
 
 
 
 
 
 
Define 
 
 
 
Then the minimization problem is 
 

    or equivalently 
 
which has a unique solution in 
 
Furthermore (Brenner and Sung 1992) the solution satisfies    
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The use of low-order elements leads to a non-physical solution in the 
incompressible limit 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 We explore the use of DG methods as a remedy for locking 
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Jumps and averages:  
on an interior edge     of element     , 
 
 
 
 
 
 
 
 
 
 
 
 
 
For example 
 
On an edge that forms part of the boundary, 
 
 
 
 
 
 
  
 

DG: elements and edges
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DG formulation: some definitions 
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•  take the inner product with a test function  
•  integrate, and integrate by parts 
 
 
 
 
Consider the left-hand side: 

�
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Next, we need the “magic formula”  
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This gives 
 
 
 
 
 
 
Since the exact solution is smooth (                      ) and the stress is 
continuous we can assume that 
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Exploiting again the smoothness of the exact solution we can add a term to 
symmetrize the problem: 
 
 
 
 
 
 
 
 
Finally, we may need to stabilize the problem: this gives us the  
symmetric interior penalty (SIP) formulation (Douglas and Dupont 1976) 
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The DG formulation 

P1(T ) : vh = a0 + a1x+ a2y

Vh =
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d ,vh|T 2 P1(T ) or Q1(T )
 

Q1(T ) : vh = a0 + a1x+ a2y + a3xy



ah(u,v)

DOUGLAS & DUPONT 1976, ARNOLD 1982, HANSBO & LARSON 2002 

RIVIÈRE & WHEELER 1999, 2000; ODEN, BABUSKA & BAUMANN 1998 

DAWSON, SUN AND WHEELER 2004 
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Figure 3.1: Polygonal domain !.

Note, that the origin O = (0, 0) is a reentrant corner of ! (cf. Figure 3.1). Then,
consider the following model problem

−∇ · σ (u) = 0 in !

u = gD on "D = ∂!.
(3.21)

Here, gD := u|!D , where u is the exact solution of (3.21) given by its polar
coordinates

ur (r, θ) = 1
2µ

rα(−(α + 1) cos((α + 1)θ) + (C2 − (α + 1))C1 cos((α − 1)θ)),

uθ (r, θ) = 1
2µ

rα((α + 1) sin((α + 1)θ) + (C2 + α − 1)C1 sin((α − 1)θ)).

Above, α ≈ 0.544484 is the solution of the equation

α sin(2ω) + sin(2ωα) = 0

with ω = 3π/4, and

C1 = −cos((α + 1)ω)

cos((α − 1)ω)
, C2 = 2(λ + 2µ)

λ + µ
.

Robust Optimal Convergence Rates on Graded Meshes

A few calculations show that the exact solution u of the model problem (3.21) is
in H2,2β (!)2 with β = (β1, 0, 0, 0, 0) for all 1 > β1 > 1− α ≈ 0.455516. Thus,

3.5. Numerical Results 63
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Figure 3.4: Performance of the DGFEM on the L-shaped domain with γ = (1/2, 0, 0, 0, 0) (graded
mesh) and with γ = 0 (uniform mesh).
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Figure 3.5: Performance of the DGFEM on the L-shaped domain with γ = (1/2, 0, 0, 0, 0) (graded
mesh) and with γ = 0 (uniform mesh).
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Figure 3.2: Graded mesh with refi ne-
ment towards the origin
(γ = (1/2, 0, 0, 0, 0)).
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Figure 3.3: Uniform mesh (i.e. graded mesh
with γ = (0, 0, 0, 0, 0)).

in order to obtain the optimal convergence rate, a graded mesh with refinement
towards the origin must be used for the numerical simulations.

The first picture of Figure 3.4 shows the errors of the DGFEM for

λ ∈ {1, 100, 500, 1000, 5000} (µ = 1)

in the energy norm

∥u∥2h =
K∈T

∥ϵ(u)∥2L2(K )
+ 1
melast e∈Eint,D

|e|−1
e
|[u]|2 ds

on a graded mesh with grading vector γ = (1/2, 0, 0, 0, 0) (cf. Figure 3.2). Ob-
viously, the convergence rate of the DGFEM is already almost optimal for ap-
proximately 5000 degrees of freedom (∼ 800 elements). Moreover, the expected
robustness of the DGFEM with respect to the Lamé coefficient λ is clearly visible
(the lines for λ ≥ 100 almost coincide).

In the second picture of Figure 3.4 the energy error of the DGFEM on a uni-
form mesh (i.e. γ = (0, 0, 0, 0, 0)) is presented. Although the DGFEM still
converges robustly, the optimal convergence rate is not anymore achieved (cf. Re-
mark 3.4.9) and the use of graded meshes is justified.

In addition, the L2 errors for the computations above are shown in Figure
3.5. Again, the performance of the DGFEM on a uniform mesh is notably worse.
However, the convergence rate of the L2 error seems to be twice as high as of the
energy error.

Volume Locking

Figure 3.6 shows that the standard (i.e. conforming) finite element method does
not converge independently of λ. Although the asymptotic rate of convergence is

DG with triangles is uniformly convergent 



maximum reaction force in the y-direction of the beam by four DG
methods and the mixed method. More precisely, the maximum
reaction force in Table 2 refers to a summation of total node forces
on a discretized boundary surface. This nodal force summation in-
dex is needed rather than a single node force for comparisons since

each DG element has four nodes and each mixed element has nine
nodes on their surfaces. The NIPG gives a better prediction on the
maximum stress than OBB. Another very important observation
from Table 2 is that the solutions of IIPG are closest to the more
accurate mixed results. Also, IIPG has the largest range of variation
of its penalty parameter. It should be noted that the solution of
SIPG is very sensitive to its penalty parameter. From a program-
ming point of view OBB is the simplest method to implement,
and SIPG has a symmetric matrix structure.

Next, we compare our DG methods with the 27-nodal mixed
method that has an optimal oðh2Þ convergent rate. The 8-nodal lin-
ear DG element also has an optimal convergent rate but only with
lower order oðhÞ. The area and shape of the high stress zone pre-
dicted by linear DG elements matched those predicted by the high-
er order mixed method. Approximately, 8% error of linear IIPG
element results compared to 27-nodal mixed elements, although
not small, is still an acceptable range for maximum point wise
stress prediction for many practical applications.

Fig. 7. Tensile stress contour ðry > 0:15 MPaÞ of CG method for (a) Poisson
ratio = 0.3 and (b) Poisson ratio = 0.499.

Fig. 8. Tensile stress contours ðry > 0:15 MPaÞ of DG solutions of beam problem with Poisson’s ratio 0.499. (a) OBB; (b) SIPG; dp ¼ 30; (c) NIPG; dp ¼ 10; and (d) IIPG; dp ¼ 50.

Table 2
DG solutions for incompressible material (m ¼ 0:499).

Methods dp dtip (mm) ðrY Þmax (MPa) Rmax (Newton)

SIPG 1 1.42 2.23 1.10
SIPG 15 1.51 0.616 0.112
SIPG 20 1.50 3.50 0.114
SIPG 30 1.50 0.656 0.114
SIPG 50 1.48 0.687 0.114
SIPG 100 1.47 1.04 0.114
OBB 0 1.57 0.748 0.126
NIPG 1 1.55 0.702 0.120
NIPG 10 1.52 0.655 0.117
NIPG 20 1.51 0.658 0.116
NIPG 50 1.49 0.685 0.119
NIPG 100 1.47 0.717 0.110
IIPG 10 1.52 0.579 0.134
IIPG 50 1.50 0.594 0.119
IIPG 100 1.48 0.611 0.113
IIPG 200 1.44 0.624 0.104
MIXED – 1.61 0.539 0.123
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These authors report good results using all methods  

OBB	  

IIPG	  NIPG	  

SIPG	  

Some computational results with quads appear to show 
locking-free behaviour … 



ALL	  	  

ALL	  	  

Grieshaber, McBride and R. (2015)	  

… but not so in other cases 



•  We know that DG works for simplicial elements 

•  Some authors report good results for quads 

•  We find locking for a simple example 

•  What’s going on? 



(I)	   (II)	   (III)	  

(IV)	  

(note the use of two stabilization terms) 

Let’s see why DG with triangles works 
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Error analysis for linear triangles: NIPG 

Use Crouzeix-Raviart interpolant: linear on triangles,  
         continuous at midpoints of edges 

 
 
Properties: 

interpolation error 

Approximation error e = u� uh

Z

E
(u�⇧u) · n ds = 0

Z

T
div(u�⇧u) dV = 0

= u�⇧u| {z }
⌘

+ ⇧u� uh| {z }
⇠

⇧u = interpolant of u



λ-terms in error bound can be handled as follows: for example, 
 
 
 
 
to give eventually 
 
 
 
Use estimate                                                        to get uniform convergence 	  
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Convergence analysis for quadrilaterals 

First need to construct a suitable interpolant 
 
As before 
 
 
 
 
 
and           must satisfy  
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The interpolant 

Inspired by DOUGLAS, SANTOS, SHEEN & YE 1999; CIA, DOUGLAS, YE 1999: 
 
 
 
 

         
          
          

Construct interpolant with span 
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Error bound 

Eventually get  
 
 
 
 
 
 
 
so not possible to bound λ-dependent term               
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Example: square plate 

u1(x, y) = sin 2⇡y

�
�1 + cos 2⇡x

�
+

1

1 + �

sin⇡x sin⇡y
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�
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1

1 + �

sin⇡x sin⇡y

BRENNER	  SINUM	  1993	  

⌦ = (0, 1)2 µ = 1

NIPG	  	  

IIPG	  	  

ALL	  	  

SIPG	  	  



Recall classical SRI for elasticity problem:  
 
to overcome volumetric locking one replaces 
 
 
 
 
 
by 
 
 
 
 
or 
 
 
 
 

A remedy: selective reduced integration (SRI)            
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Underintegration applied to (II) gives  
 
 
 
 
 
 
 
 
 
Replace (IV) with 
 
 
 
 
 
 
 
 
But we now have to check coercivity and consistency of the modified bilinear form! 	  
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Underintegration applied to (II) gives  
 
 
 
 
 
 
 
 
 
Eventually get 
 
 
 
 
 
 
 
But we now have to check coercivity and consistency of the modified bilinear form! 	  
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Coercivity 
 

NIPG:   OK for SRI on terms (II) and (III) 

SIPG:   OK for SRI on terms (II), (III), (IV) 

IIPG:   OK for SRI on terms (III) and (IV) 
 
 
 
Term (III) when underintegrated leads to a consistency error 
 
 
 
 
 
 
which can be controlled 
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Locking-free (uniformly convergent) behaviour 

 
 
 

SIP ✔ ✖ ✔ 

NIP ✔ ✖ ✔ 

IIP ✔ ✖ ✔ 

Q1P1 Q1 + SRI

✕	  
✕	  

✕	  
✕	  



Square plate:  
 
DG  with triangles 

  quads with and without SRI           

Standard finite elements / 
DG quads without SRI 	  

DG triangles / 
quads with SRI 	  



 NIPG	    IIPG	  

 SIPG	  

 DG+SRI	  

 DG	  

 DG	  

 DG	  

 DG+SRI	  

 DG+SRI	  



7.2. Technical aspects 97

Figure 7.3: T-shaped bracket with boundary conditions

The exact solution is

u1 = (cos 2⇡x� 1)(sin 2⇡y sin⇡z � sin⇡y sin 2⇡z) +
1

1 + �
sin⇡x sin⇡y sin⇡z,

u2 = (cos 2⇡y � 1)(sin 2⇡z sin⇡x� sin⇡z sin 2⇡x) +
1

1 + �
sin⇡x sin⇡y sin⇡z,

u3 = (cos 2⇡z � 1)(sin 2⇡x sin⇡y � sin⇡x sin 2⇡y) +
1

1 + �
sin⇡x sin⇡y sin⇡z.

7.2 Technical aspects

7.2.1 Parameters

Poisson’s ratio is set to ⌫ = 0.49995 where near-incompressibility is investigated. For

compressible materials, ⌫ = 0.3 is used.

The choice of values for the stabilization parameters kµ and k� is based firstly on the

theoretical considerations of stability discussed in earlier chapters. The NIPG method,

stable with k� � 0, is by default used without the second stabilization term present,

that is, with k� = 0. The IIPG and SIPG methods are by default used with the

second stabilization term included. While all the methods require kµ > 0, there is no

minimum positive value required for NIPG to be stable, while IIPG and SIPG require

Cube with prescribed body force 
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Figure 7.30: Comparison of H1 errors for NIPG for the cube, ⌫ = 0.49995

(a) Q1 elements (b) With under-integration
(c) Linear elements with

under-integration

Figure 7.31: Cube with IIPG, ⌫ = 0.49995

 NIPG	  
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Figure 7.32: Comparison of H1 errors for IIPG for the cube, ⌫ = 0.49995

(a) Q1 elements (b) With under-integration
(c) Linear elements with

under-integration

Figure 7.33: Cube with SIPG, ⌫ = 0.49995

 IIPG	  
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Figure 7.34: Comparison of H1 errors for SIPG for the cube, ⌫ = 0.49995

 SIPG	  
Q1	  SRI	  	  

P1	  full	  	  
Q1	  full	  	  

SG	  	  

Q1	  full	  	  
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SG,	  P1	  full,	  Q1	  full	  	  

Q1	  SRI	  	  
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Back to the T-bar example          

              Without SRI         With SRI	  

LIU. WHEELER, DAWSON 2009      appeared to show good behaviour for IIPG 
 
3D problem but effectively plane stress (Neumann or flux-free boundary 
condition) in out-of-plane direction, along ABCD 
 
Here treated as plane strain (Dirichlet or constrained displacement) along ABCD 

A	  

B	  

C	  

C	  
	  



Concluding remarks           
•  For near-incompressibility DG with quadrilateral elements is not 

straightforward 
 
•  A remedy, viz. selective under-integration λ-dependent edge terms, has been 

proposed, analysed, and shown to converge uniformly at the optimal rate 
 
•  Arbitrary quadrilaterals: numerical experiments indicate behaviour similar to 

that for rectangles. Analysis would be quite complex  

•  Current work: nonlinear problems; other parameter-dependent problems 
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Alternative approach: P1 approximation on quads  

Much of the manipulations carry over, all the bounds are as before, but this time 
 
 
 
 
 
 
Problematic terms: 
 
 
 
 
 

               given properties of interpolant 
 
 
But 
 

             so remains a problem for SIPG and IIPG,  
         
             but is absent for NIPG 
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Square plate, DG with quads and P1            

 NIPG	    IIPG	  

 SIPG	  


