On Multi-Domain Polynomial Interpolation Error Bounds

SAMUEL MUTUA, PROF. S.S. MOTSA

The 40th South African Symposium of Numerical and Applied Mathematics

22 - 24 March 2016

イロト (同) (ヨ) (ヨ) (つ) (つ)

Outline

2 Error bound theorems

- Univariate polynomial interpolation
- Multi-variate polynomial interpolation
- Multi-domain

3 Numerical experiment

4 Results

Aim	Error bound theorems		
Aim			

- To state and prove theorems that govern error bounds in polynomial interpolation.
- To investigate why the Gauss-Lobatto grids points are preferably used in spectral based collocation methods of solution for solving differential equations.
- To highlight on some benefits of multi-domain approach to polynomial interpolation and its application.
- To apply piecewise interpolating polynomial in approximating solution of a differential equation.

Function of one variable

Theorem 1

If $y_N(x)$ is a polynomial of degree at most *N* that interpolates y(x) at (N + 1) distinct grid points $\{x_j\}_{j=0}^N \in [a, b]$, and if the first (N + 1)-th derivatives of y(x) exists and are continuous, then, $\forall x \in [a, b]$ there exist a ξ_x [1] for which

$$E(x) \le \frac{1}{(N+1)!} y^{(N+1)}(\xi_x) \prod_{j=0}^{N} (x - x_j).$$
⁽¹⁾

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Equispaced Grid Points

$${x_j}_{j=0}^N = a + jh, h = \frac{b-a}{N}$$

Theorem 2

The error bound when equispaced grid points $\{x_j\}_{j=0}^N \in [a, b]$, are used in univariate polynomial interpolation is given by

$$E(x) \le \frac{(h)^{N+1}}{4(N+1)} y^{(N+1)}(\xi_x).$$
(2)

	Error bound theorems	Numerical experiment	
	000000000000000000000000000000000000000		
Proof			

• Fix *x* between two grid points, x_k and x_{k+1} so that $x_k \le x \le x_{k+1}$ and show that

$$|x-x_k| |x-x_{k+1}| \le \frac{1}{4}h^2.$$

ヘロト 4 目 ト 4 目 ト 4 目 ト 9 0 0

• The product term $w(x) = \prod_{j=0}^{N} (x - x_j)$ is bounded above by $\prod_{i=0}^{N} |x - x_j| \le \frac{1}{4} h^{N+1} N!.$

Substitute in equation (1) to complete the proof.

Numerical experiment

Results

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト つので

Conclusions

Gauss Lobatto (GL) Grid Points

$$\{x_j\}_{j=0}^N = \left(\frac{b-a}{2}\right)\cos\left(\frac{j\pi}{N}\right) + \left(\frac{b+a}{2}\right)$$

Theorem 3

The error bound when GL grid points $\{x_j\}_{j=0}^N \in [a, b]$, are used in univariate polynomial interpolation is given by

$$E(x) \le \frac{\left(\frac{b-a}{2}\right)^{N+1}}{K_N(N+1)!} y^{(N+1)}(\xi_x),$$
(3)

where

$$K_N = \left(\frac{N}{N+1}\right)^2 \left[\frac{(2N)!}{2^N(N!)^2}\right].$$

	000000000000000000000000000000000000000
Proof	
0	The Gauss-Lobatto nodes are roots of the polynomial

$$L_{N+1}(\hat{x}) = (1 - \hat{x}^2) P'_N(\hat{x})$$

= $-N \hat{x} P_N(\hat{x}) + N P_{N-1}(\hat{x})$
= $(N+1) \hat{x} P_N(\hat{x}) - (N+1) P_{N+1}(\hat{x})$.

9 The polynomial $L_{N+1}(\hat{x})$ in the interval $\hat{x} \in [-1, 1]$ is bounded above by

$$\max_{-1 \le \hat{x} \le 1} |L_{N+1}(\hat{x})| \le 2(N+2).$$

Solution Express $L_{N+1}(\hat{x})$ as a monic polynomial

Error bound theorems

$$\frac{L_{N+1}(\hat{x})}{2(N+1)} = \frac{1}{K_N} (\hat{x} - \hat{x}_0)(\hat{x} - \hat{x}_1) \dots (\hat{x} - \hat{x}_N).$$

4 Here

$$K_N = \left(\frac{N}{N+1}\right)^2 \left[\frac{(2N)!}{2^N(N!)^2}\right].$$

Substitute in equation (1) to complete the proof.

Numerical experiment

Results

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Conclusions

Chebyshev Grid Points [5]

$$\{x_j\}_{j=0}^N = \left(\frac{b-a}{2}\right)\cos\left(\frac{2j+1}{2N+2}\pi\right) + \left(\frac{b+a}{2}\right)$$

Theorem 4

The error bound when Chebyshev grid points $\{x_j\}_{j=0}^N \in [a, b]$, are used in univariate polynomial interpolation is given by

$$E(x) \le \frac{\left(\frac{b-a}{2}\right)^{N+1}}{2^N(N+1)!} y^{(N+1)}(\xi_x).$$
(4)

	Error bound theorems	Numerical experiment	
	000000000000000000000000000000000000000		
Durie			
Proof			

- The leading coefficient of (N + 1)-th degree Chebyshev polynomial is 2^N .
- O Take

$$w(\hat{x}) = \frac{1}{2^N} T_{N+1}(\hat{x}), \text{ where } \left| \frac{1}{2^N} T_{N+1}(\hat{x}) \right| \le \frac{1}{2^N},$$

to be the monic polynomial whose roots are the Chebyshev nodes.

- Substitute in equation (1) to complete the proof.
 - We note that for N > 3,

$$\frac{\left(\frac{b-a}{N}\right)^{N+1}}{4(N+1)} > \frac{(b-a)^{N+1}}{K_N(2)^{N+1}(N+1)!} > \frac{(b-a)^{N+1}}{2(4)^N(N+1)!}.$$

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

ヘロト 4 目 ト 4 目 ト 4 目 ト 9 0 0

Function of many variables

Theorem 5

Let $u(x,t) \in C^{N+M+2}([a,b] \times [0,T])$ be sufficiently smooth such that at least the (N + 1)-th partial derivative with respect to x, (M + 1)-th partial derivative with respect to t and (N + M + 2)-th mixed partial derivative with respect to x and t exists and are all continuous, then there exists values $\xi_x, \xi'_x \in (a, b)$, and $\xi_t, \xi'_t \in (0, T)$, [2] such that

$$E(x,t) \leq \frac{\partial^{N+1}u(\xi_x,t)}{\partial x^{N+1}(N+1)!} \prod_{i=0}^{N} (x-x_i) + \frac{\partial^{M+1}u(x,\xi_i)}{\partial t^{M+1}(M+1)!} \prod_{j=0}^{M} (t-t_j) - \frac{\partial^{N+M+2}u(\xi'_x,\xi'_t)}{\partial x^{N+1}\partial t^{M+1}(N+1)!(M+1)!} \prod_{i=0}^{N} (x-x_i) \prod_{j=0}^{M} (t-t_j).$$
(5)

Equispaced

Theorem 6

The error bound when equispaced grid points $\{x_i\}_{i=0}^N \in [a, b]$ and $\{t_j\}_{j=0}^M \in [0, T]$, in *x*-variable and *t*-variable, respectively, are used in bivariate polynomial interpolation is given by

$$E(x,t) = |u(x,t) - U(x,t)| \le C_1 \frac{\left(\frac{b-a}{N}\right)^{N+1}}{4(N+1)} + C_2 \frac{\left(\frac{T}{M}\right)^{M+1}}{4(M+1)} + C_3 \frac{\left(\frac{b-a}{N}\right)^{N+1}\left(\frac{T}{M}\right)^{M+1}}{4^2(N+1)(M+1)}.$$
(6)

Gauss Lobatto

Theorem 7

The error bound when GL grid points $\{x_i\}_{i=0}^N \in [a, b]$, in *x*-variable and $\{t_j\}_{j=0}^M \in [0, T]$, in *t*-variable are used in bivariate polynomial interpolation is given by

$$E(x,t) \leq C_1 \frac{(b-a)^{N+1}}{2^{N+1}K_N(N+1)!} + C_2 \frac{(T)^{M+1}}{2^{M+1}K_M(M+1)!} + C_3 \frac{(b-a)^{N+1}(T)^{M+1}}{(2)^{(N+M+2)}K_NK_M(N+1)!(M+1)!},$$
(7)

where

$$K_N = \left(\frac{N}{N+1}\right)^2 \left(\frac{(2N)!}{2^N(N!)^2}\right).$$

Chebyshev

Theorem 8

The error bound for Chebyshev grid points $\{x_i\}_{i=0}^N \in [a, b]$ and $\{t_j\}_{j=0}^M \in [0, T]$, in *x*-variable and *t*-variable, respectively, in bivariate polynomial interpolation is given by

$$E(x,t) \leq C_1 \frac{(b-a)^{N+1}}{2(4)^N(N+1)!} + C_2 \frac{(T)^{M+1}}{2(4)^M(M+1)!} + C_3 \frac{(b-a)^{N+1}(T)^{M+1}}{2^2(4)^{N+M}(N+1)!(M+1)!}.$$
(8)

Generalized multi-variate polynomial interpolation

If $U(x_1, x_2, ..., x_n)$ approximates $u(x_1, x_2, ..., x_n)$, $(x_1, x_2, ..., x_n) \in [a_1, b_1] \times [a_2, b_2] \times ... \times [a_n, b_n]$, and suppose that there are N_i , i = 1, 2, ..., n grid points in x_i -variable, then the error bound in the best approximation is

$$E_{c} \leq C_{1} \frac{(b_{1} - a_{1})^{N_{1} + 1}}{2(4)^{N_{1}}(N_{1} + 1)!} + C_{2} \frac{(b_{2} - a_{2})^{N_{2} + 1}}{2(4)^{N_{2}}(N_{2} + 1)!} + \dots + C_{n} \frac{(b_{n} - a_{n})^{N_{n} + 1}}{2(4)^{N_{n}}(N_{n} + 1)!}$$

$$+ C_{n+1} \frac{(b_{1} - a_{1})^{N_{1} + 1}(b_{2} - a_{2})^{N_{2} + 1} \dots (b_{n} - a_{n})^{N_{n} + 1}}{2^{n}(4)^{(N_{1} + N_{2} + \dots + N_{n})}(N_{1} + 1)!(N_{2} + 1)! \dots (N_{n} + 1)!}.$$

$$C_{n+1} = \max_{[x_{1}, x_{2}, \dots, x_{n}] \in \Omega} \left| \frac{\partial^{(N_{1} + N_{2} + \dots + N_{n} + n)}u(x_{1}, x_{2}, x_{3}, \dots, x_{n})}{\partial x_{1}^{N_{1} + 1} \partial x_{2}^{N_{2} + 1} \dots \partial x_{n}^{N_{n} + 1}} \right|.$$

$$(9)$$

・ロト・西ト・ヨト・ヨー もんぐ

Illustration of the concept of multi-domain [3]

• Let $t \in \Gamma$ where $\Gamma \in [0, T]$. The domain Γ is decomposed into p non-overlapping subintervals as

$$\Gamma_k = [t_{k-1}, t_k], \ t_{k-1} < t_k, \ t_0 = 0, \ t_p = T, \ k = 1, 2, \dots, p.$$

STRATEGY

- Perform interpolation on each subinterval.
- Define the interpolating polynomial over the entire domain in piece-wise form.

Equispaced

Theorem 9

The error bound when equispaced grid points $\{x_i\}_{i=0}^N \in [a, b]$ for *x*-variable and $\{t_j^{(k)}\}_{j=0}^M \in [t_{k-1}, t_k], k = 1, 2, ..., p$, for the decomposed domain in *t*-variable, are used in bivariate polynomial interpolation is given by

$$E(x,t) \leq C_1 \frac{\left(\frac{b-a}{N}\right)^{N+1}}{4(N+1)} + \left(\frac{1}{p}\right)^M C_2 \frac{\left(\frac{T}{M}\right)^{M+1}}{4(M+1)} \\ + \left(\frac{1}{p}\right)^M C_3 \frac{\left(\frac{b-a}{N}\right)^{N+1} \left(\frac{T}{M}\right)^{M+1}}{4^2(N+1)(M+1)}.$$
(11)

Ducch	
P1001	

• Each subinterval

$$\left| \prod_{j=0}^{M} (t - t_j^{(k)}) \right| \le \frac{1}{4} \left(\frac{T}{pM} \right)^{M+1} M! = \left(\frac{1}{p} \right)^{M+1} \frac{1}{4} \left(\frac{T}{M} \right)^{M+1} M!.$$

• Break
$$C_2 \frac{\left(\frac{T}{M}\right)^{M+1}}{4(M+1)}$$
 into $\sum_{k=1}^p \left(\frac{1}{p}\right)^{M+1} C_2^{(k)} \frac{\left(\frac{T}{M}\right)^{M+1}}{4(M+1)}$.

where

$$\max_{(x,t)\in\Omega} \left| \frac{\partial^{M+1} u(x,t)}{\partial t^{M+1}} \right| = \left| \frac{\partial^{M+1} u(x,\xi_k)}{\partial t^{M+1}} \right| \le C_2^{(k)}, \quad t \in [t_{k-1},t_k].$$

Multi-Domain

$$\sum_{k=1}^{p} \left(\frac{1}{p}\right)^{M+1} C_2^{(k)} \frac{\left(\frac{T}{M}\right)^{M+1}}{4(M+1)} \le \left(\frac{1}{p}\right)^M C_2 \frac{\left(\frac{T}{M}\right)^{M+1}}{4(M+1)}.$$
 (12)

• Similarly, last term in equation (6) reduces to $\left(\frac{1}{p}\right)^M C_3 \frac{\left(\frac{b-a}{M}\right)^{N+1} \left(\frac{T}{M}\right)^{M+1}}{\frac{4}{M}(N+1)(M+1)}$.

Gauss Lobatto

Theorem 10

The error bound when Gauss-Lobatto grid points $\{x_i\}_{i=0}^N \in [a, b]$ for *x*-variable and $\{t_j^{(k)}\}_{j=0}^M \in [t_{k-1}, t_k], k = 1, 2, ..., p$, for the decomposed domain in *t*-variable, are used in bivariate polynomial interpolation is given by

$$E(x,t) \leq C_1 \frac{(b-a)^{N+1}}{2^{N+1}K_N(N+1)!} + \left(\frac{1}{p}\right)^M C_2 \frac{(T)^{M+1}}{2^{M+1}K_M(M+1)!} + \left(\frac{1}{p}\right)^M C_3 \frac{(b-a)^{N+1}(T)^{M+1}}{(2)^{(N+M+2)}K_NK_M(N+1)!(M+1)!}.$$
(13)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ヘロト 4 目 ト 4 目 ト 4 目 ト 9 0 0

Chebyshev

Theorem 11

The error bound when Chebyshev grid points $\{x_i\}_{i=0}^N \in [a, b]$ for *x*-variable and $\{t_j^{(k)}\}_{j=0}^M \in [t_{k-1}, t_k], k = 1, 2, ..., P$ for the decomposed domain in *t*-variable, are used in bivariate polynomial interpolation is given by

$$E(x,t) \leq C_1 \frac{(b-a)^{N+1}}{2(4)^N(N+1)!} + \left(\frac{1}{p}\right)^M C_2 \frac{(T)^{M+1}}{2(4)^M(M+1)!} + \left(\frac{1}{p}\right)^M C_3 \frac{(b-a)^{N+1}(T)^{M+1}}{2^2(4)^{\{N+M\}}(N+1)!(M+1)!}.$$
(14)

Test Example

Example

Consider the Burgers-Fisher equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2} + u(1-u), \quad x \in (0,5), \quad t \in (0,10],$$
(15)

subject to boundary conditions

$$u(0,t) = \frac{1}{2} + \frac{1}{2} \tanh\left(\frac{5t}{8}\right), \ u(5,t) = \frac{1}{2} + \frac{1}{2} \tanh\left(\frac{5t}{8} - \frac{5}{4}\right),$$
(16)

and initial condition

$$u(x,0) = \frac{1}{2} - \frac{1}{2} \tanh\left(\frac{x}{4}\right).$$
 (17)

The exact solution given in [4] as

$$u(x,t) = \frac{1}{2} + \frac{1}{2} \tanh\left(\frac{5t}{8} - \frac{x}{4}\right).$$
 (18)

200

Numerical experiment

Results

Conclusions

Single VS Multiple domains

Table: 2: Absolute error values

s
$$N = 20 M = 50$$
 Single,

N = 20 M = 10 p = 5 Multiple

	Single Domain		Multi- Domain	
$x \setminus t$	5.0	10.0	5.0	10.0
0.4775	2.0474e-009	6.2515e-012	5.0959e-014	4.9849e-014
1.3650	4.8463e-009	3.0746e-011	1.0880e-014	9.9920e-015
2.5000	7.8205e-009	8.6617e-012	1.2546e-014	3.5527e-015
3.6350	1.8239e-008 3.6123e-010		1.1102e-015	4.1078e-015
4.5225	1.9871e-008	6.3427e-0010	6.4060e-014	1.1768e-014
CPU Time	2.132547 sec		0.018469 sec	
Cond NO	6.3710e004		3.3791e003	
Matrix D	1000×1000		$200 \times 200, 5$ times	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theoretical VS Numerical

Table: 1: Comparison of theoretical values of error bounds with the numerical values.

N	Error	Equispaced	Gauss-Lobatto	Chebyshev
2*5	Bound	1.2288×10^{-1}	4.9887×10^{-2}	3.1250×10^{-2}
	Numerical	1.4091×10^{-2}	1.0772×10^{-2}	8.1343×10^{-3}
2*10	Bound	1.6893×10^{-2}	1.4519×10^{-3}	8.8794×10^{-4}
	Numerical	7.9134×10^{-4}	7.0721×10^{-5}	6.1583×10^{-5}
2*20	Bound	5.7644×10^{-4}	2.0355×10^{-6}	9.0383×10^{-7}
	Numerical	5.8480×10^{-6}	1.0942×10^{-8}	9.1555×10^{-9}

The function considered is $f(x) = \frac{1}{1+x^2}$.

イロト (同) (ヨ) (ヨ) (つ) (つ)

Conclusion

- Although Gauss-Lobatto nodes yield larger interpolation error than Chebyshev nodes the difference is negligible.
- Gauss-Lobatto nodes are preferred to Chebyshev nodes when solving differential equations using spectral collocation based methods as they are convenient to use.
- Multi-domain application:
 - Approximating functions: Unbounded higher ordered derivative, or those that do not possess higher ordered derivatives.
 - Approximating the solution of differential equations that are defined over large domains.

	Error bound theorems		Conclu
Refer	ences		

sions

- Canuto C., Husseini M. Y., and Quarteroni A., and Zang T.A. (2006), Spectral Methods: Fundamentals in Single Domains. New York: Springer-Verlag.
- Madych W. R., and Nelson S. A., Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. Approx. Theory, Vol. 70, pp. 94-114, 1992.
- Motsa S.S., A new piecewise-quasilinearization method for solving chaotic systems of initial value problems, Central European Journal of Physics, Vol. 10, pp. 936-946, 2012.
- Khater A.H., and Temsah R.S., Numerical solutions of some nonlinear evolution equations by Chebyshev spectral collocation methods, International Journal of Computer Mathematics, Vol. 84, pp. 326-339, 2007.
- Trefethen L. N., Spectral methods in MATLAB. Vol. 10. Siam, 2000.