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Aim

To state and prove theorems that govern error bounds in polynomial
interpolation.
To investigate why the Gauss-Lobatto grids points are preferably used
in spectral based collocation methods of solution for solving
differential equations.
To highlight on some benefits of multi-domain approach to polynomial
interpolation and its application.
To apply piecewise interpolating polynomial in approximating solution
of a differential equation.
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Function of one variable

Theorem 1

If yN(x) is a polynomial of degree at most N that interpolates y(x) at (N + 1)
distinct grid points {xj}N

j=0 ∈ [a, b], and if the first (N + 1)-th derivatives of
y(x) exists and are continuous, then, ∀x ∈ [a, b] there exist a ξx [1] for which

E(x) ≤ 1
(N + 1)!

y(N+1)(ξx)

N∏
j=0

(x− xj). (1)
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Equispaced Grid Points

{xj}N
j=0 = a + jh, h = b−a

N

Theorem 2

The error bound when equispaced grid points {xj}N
j=0 ∈ [a, b], are used in

univariate polynomial interpolation is given by

E(x) ≤ (h)
N+1

4(N + 1)
y(N+1)(ξx). (2)
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Proof

1 Fix x between two grid points, xk and xk+1 so that xk ≤ x ≤ xk+1 and
show that

|x− xk| |x− xk+1| ≤
1
4

h2.

2 The product term w(x) =

N∏
j=0

(x− xj) is bounded above by

N∏
j=0

|x− xj| ≤
1
4

hN+1N!.

3 Substitute in equation (1) to complete the proof.
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Gauss Lobatto (GL) Grid Points

{xj}N
j=0 =

( b−a
2

)
cos
( jπ

N

)
+
( b+a

2

)
Theorem 3

The error bound when GL grid points {xj}N
j=0 ∈ [a, b], are used in univariate

polynomial interpolation is given by

E(x) ≤
( b−a

2

)N+1

KN(N + 1)!
y(N+1)(ξx), (3)

where

KN =

(
N

N + 1

)2 [
(2N)!

2N(N!)2

]
.
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Proof

1 The Gauss-Lobatto nodes are roots of the polynomial

LN+1(x̂) = (1− x̂2)P′N(x̂)

= −Nx̂PN(x̂) + NPN−1(x̂)

= (N + 1)x̂PN(x̂)− (N + 1)PN+1(x̂).

2 The polynomial LN+1(x̂) in the interval x̂ ∈ [−1, 1] is bounded above by

max
−1≤x̂≤1

|LN+1(x̂)| ≤ 2(N + 2).

3 Express LN+1(x̂) as a monic polynomial

LN+1(x̂)

2(N + 1)
=

1
KN

(x̂− x̂0)(x̂− x̂1) . . . (x̂− x̂N).

4 Here

KN =

(
N

N + 1

)2 [
(2N)!

2N(N!)2

]
.

5 Substitute in equation (1) to complete the proof.
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Chebyshev Grid Points [5]

{xj}N
j=0 =

( b−a
2

)
cos
(

2j+1
2N+2π

)
+
( b+a

2

)
Theorem 4

The error bound when Chebyshev grid points {xj}N
j=0 ∈ [a, b], are used in

univariate polynomial interpolation is given by

E(x) ≤
( b−a

2

)N+1

2N(N + 1)!
y(N+1)(ξx). (4)
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Proof

1 The leading coefficient of (N + 1)-th degree Chebyshev polynomial is
2N .

2 Take

w(x̂) =
1

2N TN+1(x̂), where
∣∣∣∣ 1
2N TN+1(x̂)

∣∣∣∣ ≤ 1
2N ,

to be the monic polynomial whose roots are the Chebyshev nodes.
3 Substitute in equation (1) to complete the proof.

We note that for N > 3,( b−a
N

)N+1

4(N + 1)
>

(b− a)N+1

KN(2)N+1(N + 1)!
>

(b− a)N+1

2(4)N(N + 1)!
.



Aim Error bound theorems Numerical experiment Results Conclusions

Function of many variables

Theorem 5

Let u(x, t) ∈ CN+M+2([a, b]× [0,T]) be sufficiently smooth such that at least
the (N + 1)-th partial derivative with respect to x, (M + 1)-th partial
derivative with respect to t and (N + M + 2)-th mixed partial derivative with
respect to x and t exists and are all continuous, then there exists values
ξx, ξ

′
x ∈ (a, b), and ξt, ξ

′
t ∈ (0,T), [2] such that

E(x, t) ≤ ∂N+1u(ξx, t)
∂xN+1(N + 1)!

N∏
i=0

(x− xi)+
∂M+1u(x, ξt)

∂tM+1(M + 1)!

M∏
j=0

(t − tj)

− ∂N+M+2u(ξ′x, ξ
′
t )

∂xN+1∂tM+1(N + 1)!(M + 1)!

N∏
i=0

(x− xi)

M∏
j=0

(t − tj).

(5)
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Equispaced

Theorem 6

The error bound when equispaced grid points {xi}N
i=0 ∈ [a, b] and

{tj}M
j=0 ∈ [0,T], in x-variable and t-variable, respectively, are used in

bivariate polynomial interpolation is given by

E(x, t) = |u(x, t)− U(x, t)| ≤C1

( b−a
N

)N+1

4(N + 1)
+ C2

( T
M

)M+1

4(M + 1)

+ C3

( b−a
N

)N+1 ( T
M

)M+1

42(N + 1)(M + 1)
.

(6)
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Gauss Lobatto

Theorem 7

The error bound when GL grid points {xi}N
i=0 ∈ [a, b], in x-variable and

{tj}M
j=0 ∈ [0,T], in t-variable are used in bivariate polynomial interpolation is

given by

E(x, t) ≤ C1
(b− a)N+1

2N+1KN(N + 1)!
+ C2

(T)M+1

2M+1KM(M + 1)!

+ C3
(b− a)N+1(T)M+1

(2)(N+M+2)KNKM(N + 1)!(M + 1)!
,

(7)

where

KN =

(
N

N + 1

)2(
(2N)!

2N(N!)2

)
.
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Chebyshev

Theorem 8

The error bound for Chebyshev grid points {xi}N
i=0 ∈ [a, b] and

{tj}M
j=0 ∈ [0,T], in x-variable and t-variable, respectively, in bivariate

polynomial interpolation is given by

E(x, t) ≤ C1
(b− a)N+1

2(4)N(N + 1)!
+ C2

(T)M+1

2(4)M(M + 1)!

+ C3
(b− a)N+1(T)M+1

22(4)N+M(N + 1)!(M + 1)!
.

(8)
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Generalized multi-variate polynomial interpolation

If U(x1, x2, . . . , xn) approximates u(x1, x2, . . . , xn),
(x1, x2, . . . , xn) ∈ [a1, b1]× [a2, b2]× . . .× [an, bn], and suppose that there
are Ni, i = 1, 2, . . . , n grid points in xi-variable, then the error bound in the
best approximation is

Ec ≤C1
(b1 − a1)N1+1

2(4)N1(N1 + 1)!
+ C2

(b2 − a2)N2+1

2(4)N2(N2 + 1)!

+ . . .+ Cn
(bn − an)Nn+1

2(4)Nn(Nn + 1)!

+Cn+1
(b1 − a1)N1+1(b2 − a2)N2+1 . . . (bn − an)Nn+1

2n(4)(N1+N2+...+Nn)(N1 + 1)!(N2 + 1)! . . . (Nn + 1)!
.

(9)

Cn+1 = max
[x1,x2,...,xn]∈Ω

∣∣∣∣∣∂(N1+N2+...+Nn+n)u(x1, x2, x3, . . . , xn)

∂xN1+1
1 ∂xN2+1

2 . . . ∂xNn+1
n

∣∣∣∣∣. (10)
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Illustration of the concept of multi-domain [3]

Let t ∈ Γ where Γ ∈ [0,T]. The domain Γ is decomposed into p
non-overlapping subintervals as

Γk = [tk−1, tk], tk−1 < tk, t0 = 0, tp = T, k = 1, 2, . . . , p.

STRATEGY
Perform interpolation on each subinterval.
Define the interpolating polynomial over the entire domain in
piece-wise form.
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Equispaced

Theorem 9

The error bound when equispaced grid points {xi}N
i=0 ∈ [a, b] for x-variable

and {t(k)
j }M

j=0 ∈ [tk−1, tk], k = 1, 2, . . . , p, for the decomposed domain in
t-variable, are used in bivariate polynomial interpolation is given by

E(x, t) ≤C1

( b−a
N

)N+1

4(N + 1)
+

(
1
p

)M

C2

( T
M

)M+1

4(M + 1)

+

(
1
p

)M

C3

( b−a
N

)N+1 ( T
M

)M+1

42(N + 1)(M + 1)
.

(11)
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Proof

Each subinterval∣∣∣∣∣∣
M∏

j=0

(t − t(k)
j )

∣∣∣∣∣∣ ≤ 1
4

(
T

pM

)M+1

M! =

(
1
p

)M+1 1
4

(
T
M

)M+1

M!.

Break C2
( T

M )
M+1

4(M+1) into
p∑

k=1

(
1
p

)M+1

C(k)
2

( T
M

)M+1

4(M + 1)
.

where

max
(x,t)∈Ω

∣∣∣∣∂M+1u(x, t)
∂tM+1

∣∣∣∣ =

∣∣∣∣∂M+1u(x, ξk)

∂tM+1

∣∣∣∣ ≤ C(k)
2 , t ∈ [tk−1, tk].

Multi-Domain
p∑

k=1

(
1
p

)M+1

C(k)
2

( T
M

)M+1

4(M + 1)
≤
(

1
p

)M

C2

( T
M

)M+1

4(M + 1)
. (12)

Similarly, last term in equation (6) reduces to
(

1
p

)M
C3

( b−a
N )

N+1
( T

M )
M+1

42(N+1)(M+1) .
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Gauss Lobatto

Theorem 10

The error bound when Gauss-Lobatto grid points {xi}N
i=0 ∈ [a, b] for

x-variable and {t(k)
j }M

j=0 ∈ [tk−1, tk], k = 1, 2, . . . , p, for the decomposed
domain in t-variable, are used in bivariate polynomial interpolation is given
by

E(x, t) ≤ C1
(b− a)N+1

2N+1KN(N + 1)!
+

(
1
p

)M

C2
(T)M+1

2M+1KM(M + 1)!

+

(
1
p

)M

C3
(b− a)N+1(T)M+1

(2)(N+M+2)KNKM(N + 1)!(M + 1)!
.

(13)
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Chebyshev

Theorem 11

The error bound when Chebyshev grid points {xi}N
i=0 ∈ [a, b] for x-variable

and {t(k)
j }M

j=0 ∈ [tk−1, tk], k = 1, 2, . . . ,P for the decomposed domain in
t-variable, are used in bivariate polynomial interpolation is given by

E(x, t) ≤ C1
(b− a)N+1

2(4)N(N + 1)!
+

(
1
p

)M

C2
(T)M+1

2(4)M(M + 1)!

+

(
1
p

)M

C3
(b− a)N+1(T)M+1

22(4){N+M}(N + 1)!(M + 1)!
.

(14)
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Test Example

Example

Consider the Burgers-Fisher equation

∂u
∂t

+ u
∂u
∂x

=
∂2u
∂x2 + u(1− u), x ∈ (0, 5), t ∈ (0, 10], (15)

subject to boundary conditions

u(0, t) =
1
2

+
1
2

tanh
(

5t
8

)
, u(5, t) =

1
2

+
1
2

tanh
(

5t
8
− 5

4

)
, (16)

and initial condition

u(x, 0) =
1
2
− 1

2
tanh

( x
4

)
. (17)

The exact solution given in [4] as

u(x, t) =
1
2

+
1
2

tanh
(

5t
8
− x

4

)
. (18)
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Single VS Multiple domains

Table: 2: Absolute error values N = 20 M = 50 Single,

N = 20 M = 10 p = 5 Multiple

Single Domain Multi- Domain
x\t 5.0 10.0 5.0 10.0

0.4775 2.0474e-009 6.2515e-012 5.0959e-014 4.9849e-014
1.3650 4.8463e-009 3.0746e-011 1.0880e-014 9.9920e-015
2.5000 7.8205e-009 8.6617e-012 1.2546e-014 3.5527e-015
3.6350 1.8239e-008 3.6123e-010 1.1102e-015 4.1078e-015
4.5225 1.9871e-008 6.3427e-0010 6.4060e-014 1.1768e-014

CPU Time 2.132547 sec 0.018469 sec
Cond NO 6.3710e004 3.3791e003
Matrix D 1000× 1000 200× 200, 5 times
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Theoretical VS Numerical

Table: 1: Comparison of theoretical values of error bounds with the numerical values.

N Error Equispaced Gauss-Lobatto Chebyshev
2*5 Bound 1.2288× 10−1 4.9887× 10−2 3.1250× 10−2

Numerical 1.4091× 10−2 1.0772× 10−2 8.1343× 10−3

2*10 Bound 1.6893× 10−2 1.4519× 10−3 8.8794× 10−4

Numerical 7.9134× 10−4 7.0721× 10−5 6.1583× 10−5

2*20 Bound 5.7644× 10−4 2.0355× 10−6 9.0383× 10−7

Numerical 5.8480× 10−6 1.0942× 10−8 9.1555× 10−9

The function considered is f (x) = 1
1+x2 .
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Conclusion

1 Although Gauss-Lobatto nodes yield larger interpolation error than
Chebyshev nodes the difference is negligible.

2 Gauss-Lobatto nodes are preferred to Chebyshev nodes when solving
differential equations using spectral collocation based methods as they
are convenient to use.

3 Multi-domain application:
Approximating functions: Unbounded higher ordered derivative, or those
that do not possess higher ordered derivatives.
Approximating the solution of differential equations that are defined over
large domains.
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