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To state and prove theorems that govern error bounds in polynomial
interpolation.

To investigate why the Gauss-Lobatto grids points are preferably used
in spectral based collocation methods of solution for solving
differential equations.

To highlight on some benefits of multi-domain approach to polynomial
interpolation and its application.

To apply piecewise interpolating polynomial in approximating solution
of a differential equation.



Error bound theorems

000000

Function of one variable

(Meosad ]

If yy(x) is a polynomial of degree at most N that interpolates y(x) at (N + 1)
distinct grid points {x;}}_ € [a, ], and if the first (N + 1)-th derivatives of
y(x) exists and are continuous, then, Vx € [a, b] there exist a & [1] for which

1 N

E(x) < my“”” (@)H(x - xj). (1)

Jj=0
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Equispaced Grid Points

{5}y =a+jhh=

The error bound when equispaced grid points {x;}1_, € [a, b], are used in
univariate polynomial interpolation is given by

(V! (

E(x) < m)’ MO (). 2
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Proof

@ Fix x between two grid points, x; and x; so that x; < x < x4 and
show that

1
|x — x| |x — xp1 | < th.

@ The product term w(x) = | | (x — x;) is bounded above by

—.

Il
=

J

= 1
H Ix— x| < ZhNHN!.
j=0

© Substitute in equation (1) to complete the proof.
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Gauss Lobatto (GL) Grid Points

The error bound when GL grid points {x;}X € [a, b], are used in univariate
polynomial interpolation is given by

(bfa)N'H

2 (N+1) 3
E) < o2 ™ ) 3)

K= (N]i 1)2 [2182(%3;2] '

where
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Proof

@ The Gauss-Lobatto nodes are roots of the polynomial
Ly (%) = (1= #)Py(%)
—NxPy(X) + NPy_1(%)
= (N+ 1)xPy(x) — (N + 1)Py41(%).

@ The polynomial Ly (%) in the interval X € [—1, 1] is bounded above by

_max |Lyi1(X)] < 2(N +2).

@ Express Ly (%) as a monic polynomial

a®
2<N+7:‘1)7FN(Xixo)(xfxl)“-(x*XN).

o= (1) [

© Substitute in equation (1) to complete the proof.

© Here
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Chebyshev Grid Points [5]

The error bound when Chebyshev grid points {x;}}_, € [a, b], are used in
univariate polynomial interpolation is given by

(). @
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Proof

@ The leading coefficient of (N + 1)-th degree Chebyshev polynomial is
2N,
Q@ Take

1 1 1
N 2NTN+1( ) 27]\]7

to be the monic polynomial whose roots are the Chebyshev nodes.

w(X) = = Tn+1(X), where <

@ Substitute in equation (1) to complete the proof.

@ We note that for N > 3,

)™ p—a (b —a)¥+!
AN+D) K@M (N1 2NN+ D




Error bound theorems

[ Jelelele]

Function of many variables

(Messns ]

Letu(x,t) € CN*M+2([a, b] x [0, T]) be sufficiently smooth such that at least
the (N + 1)-th partial derivative with respect to x, (M + 1)-th partial
derivative with respect to 7 and (N + M + 2)-th mixed partial derivative with
respect to x and ¢ exists and are all continuous, then there exists values

&, & € (a,b),and &, &) € (0,T), [2] such that

aNJrl §X7 H 6M+1( gt)
|

DXV FI(N + 1 T M+ 1)
X,

- P2y (¢! ¢ ﬁ o
OxNHOMHI(N + 1)I(M + 1) !

E(x1) <o o (t=1)

J=

0
1§ (Gt
=0

&)

~
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Equispaced

Theorem 6

The error bound when equispaced grid points {x;}Y_, € [a, b] and
{t;}1Ly € [0, T}, in x-variable and -variable, respectively, are used in
bivariate polynomial interpolation is given by
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Gauss Lobatto

Theorem 7
The error bound when GL grid points {x;}Y, € [a, b], in x-variable and
{t;}iLy € [0, T}, in z-variable are used in bivariate polynomial interpolation is
given by
(b _ a)N+1 (T)M+l
Ext) <Clm7—+—"— _
(x,1) <G Ky (N 1 1)! + C22M+1KM(M+ 1)! o
PR U alcoiad
Y 2)WHMAD Ky Ky (N + 1)I(M + 1)1
where
N \’/ (2N)!
Ky = .
N+1) \2vanye
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Chebyshev

Theorem 8
The error bound for Chebyshev grid points {x;}" , € [a, b] and
;MM € [0, T], in x-variable and z-variable, respectively, in bivariate
7S j=0 P Y.
polynomial interpolation is given by
(b — a)V+! e (T)M+!
@V(N+ 1) TP 2(4M(M 1))
(b _ a)N+1(T)M+1
WAM(N + 1)I(M + 1)V

E(x7 t) < C12

+ G

2(4

®)




Generalized multi-variate polynomial interpolation

If U(xy,x2,...,x,) approximates u(x,xa, ..., %),
(x1,%2, ..., Xn) € [a1,b1] X [a2,b2] X ... X [ay, by,], and suppose that there
are N;, i = 1,2, ..., n grid points in x;-variable, then the error bound in the

best approximation is
(bl _ al)Nl-‘rl Lc (bz _ az)N2+1
24N (N + 1)1 T TP2(4)M (N, + 1)
(bn _ an)NnJrl

EC SCI

o+ 9
+ + 2(4)N”<Nn+ 1)' ( )
iC (b] — Cll)N'+1(b2 — az)N2+1 e (bn — an)N"+l
(@) NN AN (N + DN, + D (N, + D
(N1+N2+-... 4N, +-n)
Cror = max 0 u(xy, X2, X3, . -, Xp) (10)

[1,%2,.., %] €Q 3x11\l‘+13x12\,2+1 A
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Illustration of the concept of multi-domain [3]

@ Letr € T where I' € [0, T]. The domain I is decomposed into p
non-overlapping subintervals as

Iy = [tk—l,tk], 1 < Iy, tp =0, tPZT, k=1,2,...,p. J

STRATEGY
@ Perform interpolation on each subinterval.

@ Define the interpolating polynomial over the entire domain in
piece-wise form.
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Equispaced

Theorem 9
The error bound when equispaced grid points {x;}Y_, € [a, b] for x-variable

and {t;k) }j"io € [ti—1,t), k= 1,2,...,p, for the decomposed domain in
t-variable, are used in bivariate polynomial interpolation is given by

(" 1y )
E(x, 1) SC14(N——|—1) I (;) 24M 1 1)

an

N
+ 13) C342(N+1)(M+1)'
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@ Each subinterval

M M+1 M+1 M+1
[T¢-1) < I = (1 r M!.
J — 4 \pM p 4\ M

=0
7 \M+1 r 1 M+1 (l)M‘H
@ Break C @ into (> C(k)Mi.
4T kzzl » 2 4M+1)
where
oM+ u(x, 1) M+ u(x, &) (k)
wnea | oM :‘ oM+1 S G €l i

@ Multi-Domain

1 M+1 T M+1 1 M T M+-1
< \p PAM+1) T \p 4(M+1)
M ﬂ)/\url(l M1
o Similarly, last term in equation (6) reduces to (%) G~ W

M=

k

(N+D(M+1) -~



Error bound theore

Gauss Lobatto

Theorem 10
The error bound when Gauss-Lobatto grid points {x;}Y_, € [a, b] for

x-variable and {tj(k) o € [ti-1, 1), k= 1,2,..., p, for the decomposed
domain in #-variable, are used in bivariate polynomial interpolation is given
by

b — a)Vt! 1 M T\M+1
E(x,1) < Cl# +(=2 CzL
Ky (N + 1) \p MHTK Y (M 4 1))

1\ (6 — eyl
’ <p> < (2)WHMID Ky Ky (N + 1)I(M + 1)1

13)




Error bound theore

Chebyshev

Theorem 11

The error bound when Chebyshev grid points {x;}, € [a, b] for x-variable
and {t;k) Moo € (1, ], k= 1,2,..., P for the decomposed domain in
t-variable, are used in bivariate polynomial interpolation is given by

(b o a)N-H 1 M (T)M+1
#0 < ot + () Camenrr

M (b — a)N+! (T)M+!
- (5) CR@ (N T M+ )

(14)




Test Example

Consider the Burgers-Fisher equation

Ou ou  O%u

o, en o _ 15
5, T = g tull—u), x€(0,5), re (0,10, (9

subject to boundary conditions

1o 5 11 55
u(O,t)zz—i—ztanh(;),u(S,t):2+2tanh(g—4>, (16)

and initial condition

u(x,0) = % - %tanh (g) : a7

The exact solution given in [4] as

5t «x

u(x,t)Z%—l-%tanh <8_4> o (18)




Single VS Multiple domains

Table: 2: Absolute error values [JNESIINESIN{UN Single,

N=20M=10p =5 OGNS
Single Domain Multi- Domain
x\t 5.0 10.0 5.0 10.0

0.4775 2.0474e-009 6.2515e-012 5.0959e-014 | 4.9849¢-014
1.3650 4.8463e-009 | 3.0746e-011 1.0880e-014 | 9.9920e-015
2.5000 7.8205e-009 | 8.6617e-012 1.2546e-014 | 3.5527e-015
3.6350 1.8239¢-008 | 3.6123e-010 1.1102e-015 | 4.1078e-015
4.5225 1.9871e-008 | 6.3427e-0010 | 6.4060e-014 | 1.1768e-014

CPU Time 2.132547 sec 0.018469 sec

Cond NO 6.3710e004 3.3791e003

Matrix D 1000 x 1000 200 x 200, 5 times




Theoretical VS Numerical

Table: 1: Comparison of theoretical values of error bounds with the numerical values.

N Error Equispaced Gauss-Lobatto Chebyshev
2*5 | Bound 1.2288 x 10~" | 4.9887 x 102 | 3.1250 x 102
Numerical | 1.4091 x 1072 | 1.0772 x 10=% | 8.1343 x 1073
2*10 | Bound 1.6893 x 1072 | 1.4519 x 10> | 8.8794 x 10~*
Numerical | 7.9134 x 10~* | 7.0721 x 107> | 6.1583 x 107>
2%20 | Bound 5.7644 x 10~% | 2.0355 x 10=° | 9.0383 x 107’
Numerical | 5.8480 x 107° | 1.0942 x 108 | 9.1555 x 10~

The function considered is f(x) =

_1
14x2°




Conclusions

Conclusion

@ Although Gauss-Lobatto nodes yield larger interpolation error than
Chebyshev nodes the difference is negligible.

© Gauss-Lobatto nodes are preferred to Chebyshev nodes when solving
differential equations using spectral collocation based methods as they
are convenient to use.
© Multi-domain application:
o Approximating functions: Unbounded higher ordered derivative, or those
that do not possess higher ordered derivatives.
e Approximating the solution of differential equations that are defined over
large domains.
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