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1.  Gauss quadrature converges geometrically 
if the integrand is analytic 

19th century result 
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If  f  is analytic on [–1,1], it is analytic and bounded by M in some 
Bernstein ρ-ellipse with foci ±1, ρ = semimajor + semiminor axes > 1. 

cosh(a) 

sinh(a) 

1 1 

ρ = exp(a) 

Theorem.   The errors in (n+1)-point Gauss quadrature satisfy 

. 

Explanation 
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Proof.  Expand  f  in a Chebyshev series with coefficients  ak . 
By a contour integral one can show (Bernstein 1912): 

 

 

 

This implies a bound for the truncated series: 

 

 

 
which implies for (n+1)-point Gauss quadrature  

since Gauss is exact for polynomials of degree 2n+1.   QED. 
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0 

2π 

Poisson's example: perimeter of  
ellipse with axes 1/2π and 0.8/2π: 

 
            I =  (2π)−1 ∫ (1 − 0.36sin2θ)1/2 dθ  
 
Take advantage of 4-fold symmetry. 

     2 points:  0.9000000000 

     3 points:  0.9027692569 

     5 points:  0.9027798586 

     9 points:  0.9027799272 

"La valeur approchée de I sera I = 0,9927799272." 

 

 

 

 

 

2.  So does the equispaced trapezoidal rule 
if the integrand is also periodic 

See T. + Weideman, SIAM Review 2014 

Poisson 1823 
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Suppose  f  is analytic, bounded, and periodic in  Sα = {z: −α < Im z < α} . 

h 

α 

Davis 1959.   He calls the result "folklore". 

 

Theorem.  The error in trapezoidal rule quadrature is  O(e2α/h). 

Proof by contour integrals, or by Fourier series and aliasing 
(with Fourier coefficients estimated by contour integrals). 
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Same convergence result as before, under mild assumptions: 

Analogous result for trapezoidal rule on the real line 

 

 

 

Aitken 1939   Estimating statistical moments 

Turing 1943   Application to Riemann zeta function 

Goodwin 1949   "It is well known to computers that...“ 

Faddeeva 1954   Applications to special functions 

Fettis 1955   Like Goodwin, assumes O(e−x2) decay 

Moran 1958   Connections with probability 

McNamee 1964   More general analysis using contour integrals 

Martensen 1968   Contour integrals again 

Schwartz 1969   Special functions 

Suppose  f  is analytic and bounded in  Sα = {z : −α < Im z < α} 
but not necessarily periodic.  Now we use an infinite grid. 

Error in trap. rule quadrature:  O(e2α/h)   

7/26 



Example — Gaussian 

        I  = π−1/2 ∫  exp(−x2) dx  

         h =   π   : 1.7726372048 

           h = π / 2 : 1.0366315028 
           h = π / 3 : 1.0002468196 
           h = π / 4 : 1.0000002251 
           h = π / 5 : 1.0000000000 

 
 

 

 

 

 

−∞ 

∞ 

Example — Runge function 

        I  = π−1 ∫  (1+x2) −1 dx  

         h =   π   : 1.31303527 

           h = π / 2 : 1.03731468 
           h = π / 3 : 1.00496976 
           h = π / 4 : 1.00067107 
           h = π / 5 : 1.00009070 

 
 

 

−∞ 

∞ 

If  h =/n, error = O(e2n)   
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3.  Gregory formulas avoid the 2-4-2-4-2 
oscillation of Simpson’s rule 

 

Gregory, 1670 (long before Simpson) 
See Brass-Petras, Quadrature Theory, 2011 

and Javed-T., Numer. Math. 2016 

Euler-Maclaurin:  trap. rule + endpoint corrections based on derivatives. 

Gregory:  same, but endpoint corrections based on finite differences. 

Composite Simpson’s rule:    1/3    4/3     2/3    4/3   2/3   4/3  2/3  ...   

degree 2 Gregory formula:    3/8    7/6   23/24    1       1      1      1    ...    

O ( h4)  convergence,  f (x) = ex   

SIMPSON 

GREGORY 

ratio  4.75   
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Gene Golub, age 37 

“Calculation of Gauss quadrature rules”,  
Math. Comp., 1969 (with J. H. Welsch) 

Carl Gauss, age 37 

“Methodus nova integralium valores per 
approximationem inveniendi,” Comment. 
Soc. Reg. Scient. Gotting. Recent., 1814 

4.  Gauss nodes and weights can be 
computed in O(n) operations 
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Glaser, Liu + Rokhlin 2007 
Bogaert, Michiels + Fostier 2012 
Hale + Townsend 2013 
Bogaert 2014 
 
(all in SISC) 

[s,w] = legpts(n) 

Golub + Welsch 1969:  matrix eigenvalue problem.  O(n2) flops.    

O(n) algorithms:    

Golub died in 2007.    
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    Gauss 1814, Takahasi + Mori 1971  

5.  Every quadrature formula is associated 
with a rational approximation 

I  is also given by a contour integral: 

In  is given by a contour integral: 

If  r ≈ φ  in a region of the z-plane where  f  is analytic, then In ≈ I .  

Proof: 

(from the Cauchy integral formula) 
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r(z) = (1−zn)−1 

Rational “filter function” from 
trapezoidal rule on unit circle 

Austin, Kravanja + T., SINUM 2015 

Exponentially close to 1 inside the 
unit disk and to 0 outside.  
 

|r(z)|, n=32 

The simplest example of a rational 
approximation.  
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Quadrature → approximation 

 

Their approximations tell us about accuracy 
of quadrature formulas (Takahasi + Mori 1971). 
(See next item, Gauss vs. Clenshaw-Curtis.) 

 
Masatake Mori 

Conversely, quadrature formulas give us rational approximations. 

      |x| and √x :  Zolotarev 1877, Stenger 1986, Hale-Higham-T. 2008 

      ex on negative real axis :  T.-Weideman-Schmelzer 2006 

 
                                                                                    See chap. 25 of ATAP. 

 

 

– 

Approximation → quadrature 
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Quadrature on a Hankel contour 

(Butcher, Talbot, Weideman,…) 

 

 

 

Type (16,16) rational approximations of ex on (– ∞ ,0]  

Best approximation 

(Cody-Meinardus-Varga, 
          Gonchar-Rakhmanov, …) 

 

 

 

Contours show errors |ez  rn(z)| = 100, 101,…,1014,  n = 16. 
The white dots are the poles of rn = quadrature points. 
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O’Hara + Smith, Computer J. 1968 
T., SIREV 2008 

Xiang + Bornemann, SINUM 2012 

6.  Clenshaw-Curtis converges as fast as Gauss 
if the integrand is nonanalytic 
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The curves are Mori-style error contours for rational approximations 

                  | log((z+1)/(z1))  rn(z) | = 100, 101,…,1014 (from inside out) 

n2 finite interpolation pts, n+3 at   2n+3 interpolation points, all at   

The plots below make it nearly obvious that Clenshaw-Curtis 
will be as accurate as Gauss for nonanalytic integrands. 

Gauss Clenshaw-Curtis 

17/26 



 
 Theorem.  Let  f (k)  have bounded variation for some  k ≥ 2. 

                    Then as n→∞ ,   |I – In|  =  O(n– k–1) 

                    for both Clenshaw-Curtis and Gauss quadrature. 

 

Xiang + Bornemann, SINUM 2012 

cc_vs_gauss 
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7.  All such polynomial-based formulas are suboptimal 
by a factor of π/2, or (π/2)d in d dimensions 

Bakhvalov 1967 
Hale + T., SINUM  2008 

Gauss, C-C and other “interpolatory” schemes follow this principle: 
(1) interpolate the data by a polynomial, (2) integrate the interpolant. 

However, the resolution power of polynomials is nonuniform: 
outstanding at the endpoints, paying a price in the middle. 

This shows up in the shape of a Bernstein ellipse.  For f  to be 
analytic here, much more smoothness is required near 0 than near 1. 
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By a conformal map, e.g. from an ellipse to an infinite strip, one can 
transplant a Gauss or C-C rule to one with more uniform behaviour. 

This gives a quadrature rule that corresponds to integration of a 

nonpolynomial interpolant.  Up to π/2 faster convergence for 

integrands analytic in an ε-neighbourhood of [–1,1]. 

                              In  d=8 dimensions, improvement by (π/2)d ≈ 37. 
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strip_vs_gauss 

Here is a theorem comparing Gauss with Gauss transplanted 
by the map from the Bernstein 1.1-ellipse to an infinite strip. 

Theorem.  Let  f  be analytic and bounded in the ε-neighbourhood 
of  [–1,1] for some ε ≤ 0.05.  Then 

                                 Gauss:  |I – In| = O( (1+ε)–2n ) 

         Transplanted Gauss:  |I – In| = O( (1+ε)–3n ) 
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8.  Quadrature on a Cauchy integral 
reduces f (A) or eig(A) to (A–zkI)–1 

where C  encloses the spectrum of  A .   

For a matrix or operator  A,  f (A) is defined by a resolvent integral 

In typical applications 10-20 point quadrature gives full accuracy. 
So computing  f (A)  is reduced to a modest number of linear solves. 

T.-Weideman-Schmelzer 2006, Hale-Higham-T. 2008 
Lin-Lu-Ying-E 2009, Burrage-Hale-Kay 2012 

Lopez-Fernandez-Sauter 2012,…. 

Other contour integrals find poles of  (z – A)–1, i.e., eigenvalues of  A . 

Sakurai-Sugiura 2003, Polizzi 2008 (“FEAST”).  See Austin-Kravanja-T. 2015 
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9.  #1 and #2 generalize to perturbed points that stay 
separated (despite the Kadec ¼ theorem) 

See T. + Weideman, SIAM Review 2014, sec. 9 
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For Gauss, Clenshaw-Curtis, or periodic trapezoidal rule — 

       (1)   f  analytic            I – In  =  O(C –n) ,  C > 1 . 

       (2)   f  continuous      I – In  →  0 . 

 Let  α ≥ 0  be given.  Perturb each point up to  α  times the distance to the next. 
(For  α < ½  the points remain separate; for  α ≥ ½  they may coalesce.) 
What happens to (1) and (2)? 

Quadrature literature:  we know none. 
Approximation theory literature:  analytic  f , no restriction on  α . 
Sampling theory literature:  α < ¼  required for a Riesz basis.  

Theorem (in progress).   

     (1)  holds for all α . 

     (2)  holds iff  α<½ .  

 

Fejér 1918 
 Kalmár 1926 

Kis 1956 
Hlawka 1969 

 
Kadec 1964 

Follows from the approximation theory results. 

Follows from Pólya’s theory of 1933 
         +  bounds on quadrature weights. 
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10. Interpolatory cubature is isotropic, but 
the hypercube is far from isotropic 

• Many methods for high-dimensional quadrature/approximation/PDE claim 
to combat the curse of dimensionality.  We have Smolyak cubature, 
hierarchical bases, sparse grids, interpolatory cubature, Padua points, quasi-
Monte Carlo, low-rank compression, tensor trains,…. 

• Such methods are certainly successful in some applications. 

• For “arbitrary” functions  f , the curse cannot be beaten.  So these methods         
rely on exploiting special properties of f : often some kind of alignment with 
axes — anisotropy. 

• Authors rarely talk about anisotropy.  Some say their methods apply to 
“smooth” functions — but then define smoothness anisotropically, typically 
via mixed derivatives. 

• Could matters of anisotropy be confronted more squarely? 

• Analogy: Krylov matrix iterations are no good for arbitrary matrices; they 
depend on favourable spectral properties.  So the name of the game is 
preconditioners.  Everybody knows this and discusses it squarely. 
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Surprisingly pronounced anisotropy of the hypercube [–1,1]d  

f (x) = exp(–100x2) can be resolved to 15 digits on [–1,1] by p(x) of degree 120. 

Chebyshev coeffs of  f (x) 

Wrong!  Need degree 120  2, not 120, 
to get 15 digits in the unit square. 

√ – 

What degree p(x,y) is needed for 
f (x,y) = exp(–100(x2+y2)) on [–1,1]2? 

Hint:  f  is isotropic, and multivariate 
polynomials are isotropic. 

In d=8 dimensions, 639 times as many coeffs are needed as you might expect. 
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Contour plot of Chebyshev 
coeffs of  f (x,y) 


