
Simultaneous Gaussian quadrature
for Angelesco systems

Walter Van Assche1

KU Leuven, Belgium

SANUM – March 22, 2016

1Joint work with Doron Lubinsky
Walter Van Assche Simultaneous Gaussian quadrature



Simultaneous Gaussian quadrature

Introduced by C.F. Borges in 1994

(goes back to Angelesco 1918).

r measures µ1, . . . , µr are given, one function f : R → R.
We want to approximate r integrals∫

f (x) dµj(x), 1 ≤ j ≤ r

by means of quadrature sums of the form

N∑
k=1

λ
(j)
k,N f (xk,N), 1 ≤ j ≤ r ,

and the quadrature needs to be correct for polynomials of degree
as high as possible.
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Multiple orthogonal polynomials

Type II multiple orthogonal polynomial P~n for the multi-index
~n = (n1, . . . , nr ) ∈ Nr is the monic polynomial of degree
|~n| = n1 + n2 + . . . + nr for which∫

xkP~n(x) dµj(x) = 0, 0 ≤ k ≤ nj − 1, 1 ≤ j ≤ r .

Theorem

If we choose as nodes the zeros xk,rn of P(n,n,...,n) and if we take

λ
(j)
k,rn =

∫
`k,rn(x) dµj(x),

(`k,rn fundamental polynomials of Lagrange interpolation). Then
rn∑

j=1

λ
(j)
k,rnp(xk,rn) =

∫
p(x) dµj(x), 1 ≤ j ≤ r

whenever p is a polynomial of degree at most (r + 1)n − 1.
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Angelesco systems

An Angelesco system is a system of r measures such that

supp(µj) ⊂ [aj , bj ]

and the intervals (a1, b1), . . . , (ar , br ) are disjoint.

−∞ < a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ar < br < ∞

Property

The type II multiple orthogonal polynomial P~n for an Angelesco
system always exists and has nj zeros on (aj , bj) for 1 ≤ j ≤ r :

P~n(x) =
r∏

j=1

p~n,j(x).

In fact p~n,j is an ordinary orthogonal polynomial of degree nj on
[aj , bj ] for the measure

∏
i 6=j |p~n,i (x)| dµj(x).
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Known results

Property (Nikishin-Sorokin)

The quadrature weights have the following properties

λ
(j)
k,rn > 0, if xk,rn ∈ [aj , bj ],

and λ
(j)
k,rn has alternating sign when xk,rn ∈ [ai , bi ] with i 6= j .

Furthermore λ
(j)
k,rn is positive for the zero in [ai , bi ] closest to

[aj , bj ].
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Simultaneous quadrature on two intervals

We consider only two intervals [a1, b1] and [a2, b2], with b1 ≤ a2.

We set
P(n,n)(x) = (−1)npn(x)qn(x),

with

pn(x) =
n∏

j=1

(x − xj ,2n), qn(x) = (−1)n
2n∏

j=n+1

(x − xj ,2n),

i.e., pn has zeros on [a1, b1] and qn has zeros on [a2, b2].
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Simultaneous quadrature on two intervals

Quadrature rules:

2n∑
j=1

λ
(1)
j ,2nP(xj ,2n) =

∫ b1

a1

P(x) dµ1(x),

2n∑
j=1

λ
(2)
j ,2nP(xj ,2n) =

∫ b2

a2

P(x) dµ2(x),

for every polynomial P of degree ≤ 3n − 1.

Choose P(x) = π(x)qn(x), then

n∑
j=1

λ
(1)
j ,2nπ(xj ,2n)qn(xj ,2n) =

∫ b1

a1

π(x) qn(x) dµ1(x),

for every polynomial π of degree 2n − 1

λ
(1)
j ,2nqn(xj ,2n) = λj ,n(qn dµ1), 1 ≤ j ≤ n, Gauss quadrature
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Simultaneous quadrature on two intervals

Quadrature rules:
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λ
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j=1

λ
(2)
j ,2nP(xj ,2n) =

∫ b2

a2

P(x) dµ2(x),

for every polynomial P of degree ≤ 3n − 1.

Choose P(x) = π(x)p2
n(x), then

2n∑
j=n+1

λ
(1)
j ,2nπ(xj ,2n)p

2
n(xj ,2n) =

∫ b1

a1

π(x) p2
n(x) dµ1(x),

for every polynomial π of degree n − 1.

Interpolatory quadrature formula for [a1, b1] with quadrature nodes
on [a2, b2]
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Possé-Chebyshev-Markov-Stieltjes inequalities

Theorem (Lubinsky-WVA)

Suppose 1 ≤ ` ≤ n and g : (−∞, x`,2n] → [0,∞) has 2n
continuous derivatives, with

g (k)(x) ≥ 0, 0 ≤ k ≤ 2n.

Then

`−1∑
k=1

λ
(1)
k,2ng(xk,2n) ≤

∫ x`,2n

a1

g(x) dµ1(x) ≤
∑̀
k=1

λ
(1)
k,2ng(xk,2n).

Follows from the Possé-Chebyshev-Markov-Stieltjes inequalities for
the measure qn dµ1 and the fact that g/qn is completely
monotonic on [a1, b1].
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Chebyshev-Markov-Stieltjes inequalities

Property

For 1 ≤ ` ≤ n − 1

λ
(1)
`,2n ≤

∫ x`+1,2n

x`−1,2n

dµ1(x), λ
(1)
`,2n + λ

(1)
`+1,2n ≥

∫ x`+1,2n

x`,2n

dµ1(x),

and
n∑

k=1

λ
(1)
k,2n ≤

∫ b1

a1

dµ1(x).
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Chebyshev-Markov-Stieltjes inequalities

Property

For n + 1 ≤ ` ≤ 2n − 1

λ
(2)
`,2n ≤

∫ x`+1,2n

x`−1,2n

dµ2(x), λ
(2)
`,2n + λ

(2)
`+1,2n ≥

∫ x`+1,2n

x`,2n

dµ2(x),

and
2n∑

k=n+1

λ
(2)
k,2n ≤

∫ b2

a2

dµ2(x).
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Potential theory

Suppose that µ′1 > 0 a.e. on [a1, b2] and µ′2 > 0 a.e. on [a2, b2].

asymptotic distribution of the zeros of pn:

lim
n→∞

1

n

n∑
j=1

f (xj ,2n) =

∫ b∗

a1

f (x) dν1(x), f ∈ C ([a1, b1])

asymptotic distribution of the zeros of qn:

lim
n→∞

1

n

2n∑
j=n+1

g(xj ,2n) =

∫ b2

a∗
g(x) dν2(x), g ∈ C ([a2, b2])

Walter Van Assche Simultaneous Gaussian quadrature



Potential theory

Suppose that µ′1 > 0 a.e. on [a1, b2] and µ′2 > 0 a.e. on [a2, b2].

asymptotic distribution of the zeros of pn:

lim
n→∞

1

n

n∑
j=1

f (xj ,2n) =

∫ b∗

a1

f (x) dν1(x), f ∈ C ([a1, b1])

asymptotic distribution of the zeros of qn:

lim
n→∞

1

n

2n∑
j=n+1

g(xj ,2n) =

∫ b2

a∗
g(x) dν2(x), g ∈ C ([a2, b2])

Walter Van Assche Simultaneous Gaussian quadrature



Potential theory

Suppose that µ′1 > 0 a.e. on [a1, b2] and µ′2 > 0 a.e. on [a2, b2].

asymptotic distribution of the zeros of pn:

lim
n→∞

1

n

n∑
j=1

f (xj ,2n) =

∫ b∗

a1

f (x) dν1(x), f ∈ C ([a1, b1])

asymptotic distribution of the zeros of qn:

lim
n→∞

1

n

2n∑
j=n+1

g(xj ,2n) =

∫ b2

a∗
g(x) dν2(x), g ∈ C ([a2, b2])

Walter Van Assche Simultaneous Gaussian quadrature



Potential theory

The limiting measures (ν1, ν2) satisfy a vector equilibrium
problem

I (ν1) + I (ν2) + I (ν1, ν2) = min
(
I (τ1) + I (τ2) + I (τ1, τ2)

)
over all probability measures τ1 on [a1, b1] and τ2 on [a2, b2], where

I (τi , τj) =

∫ bi

ai

∫ bj

aj

log
1

|x − y |
dτj(x) dτi (y),

and I (τi ) = I (τi , τi ).
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Potential theory

Variational conditions for the potentials of ν1 and ν2

U(x ; ν1) =

∫
log

1

|x − y |
dν1(y), U(x ; ν2) =

∫
log

1

|x − y |
dν2(y).

2U(x ; ν1) + U(x ; ν2)

{
= `1, x ∈ [a1, b

∗],

> `1, x ∈ (b∗, b1],

U(x ; ν1) + 2U(x ; ν2)

{
= `2, x ∈ [a∗, b2],

> `2, x ∈ [a2, a
∗).

b∗ = b1 and a∗ = a2

b∗ < b1 and a∗ = a2 three possibilities

b∗ = b1 and a2 < a∗
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Potential theory

1

γ2
n(qn dµ1)

=

∫ b1

a1

p2
n(x) qn(x) dµ1(x),

1

γ2
n(pn dµ2)

=

∫ b2

a2

q2
n(x) pn(x) dµ2(x)

Asymptotic behavior of these norms

lim
n→∞

γn(qn dµ1)
1/n = e`1/2, lim

n→∞
γn(pn dµ2)

1/n = e`2/2.

Gonchar-Rakhmanov 1981, Nikishin-Sorokin 1988/1991
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Estimates

Property

For 1 ≤ j ≤ n one has

λ
(1)
j ,2n ≥ λm(xj ,2n;µ1), m = d3n

2
e.

If J1 is a closed subinterval of (a1, b1) and µ1 is absolutely
continuous in an open neighborhood of J1, while µ′1 is bounded
from below by a positive constant there, then

λ
(1)
j ,2n ≥

C1

n
, xj ,2n ∈ J1.
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Estimates

Property

Suppose b1 < a2. Then uniformly on compact subsets of (a1, b
∗)

λ
(1)
j ,2n ≤

(
1 + o(1)

)
λbn/2c(xj ,2n;µ1).

If J1 is a closed subinterval of (a1, b
∗) and µ1 is absolutely

continuous in an open neighborhood of J1 and µ′1 is bounded
above by a constant, then

λ
(1)
j ,2n ≤

C2

n
, xj ,2n ∈ J1.
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Convergence results: positive weights

Theorem (Lubinsky-WVA)

Let f be a continuous function on [a1, b1] and f (b∗) = 0, with
[a1, b

∗] = supp(ν1). Then

lim
n→∞

n∑
j=1

λ
(1)
j ,2nf (xj ,2n) =

∫ b∗

a1

f (x) dµ1(x).

The first quadrature rule converges for functions f that can be
approximated by weighted polynomials (weight qn(x)), i.e., there
exists a sequence of polynomials (Rn)n such that

lim
n→∞

‖f − Rnqn‖[a1,b1] = 0.

These are continuous functions that vanish outside (a1, b
∗)

[Totik, 1994].
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Convergence results: positive weights

Theorem (Lubinsky-WVA)

Let g be a continuous function on [a2, b2] and g(a∗) = 0, with
[a∗, b2] = supp(ν2). Then

lim
n→∞

2n∑
j=n+1

λ
(2)
j ,2ng(xj ,2n) =

∫ b2

a∗
g(x) dµ2(x).

The second quadrature rule converges for functions g that can be
approximated by weighted polynomials (weight pn(x)), i.e., there
exists a sequence of polynomials (Sn)n such that

lim
n→∞

‖g − Snpn‖[a2,b2] = 0.

These are continuous functions that vanish outside (a∗, b2)
[Totik, 1994].
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Convergence results: alternating weights

Theorem (Lubinsky-WVA)

Suppose that µ′1 > 0 on [a1, b1] and µ′2 > 0 on [a2, b2], and
b1 < a2. Then

lim
n→∞

|λ(1)
j ,2n|

1/n = exp
(
2U(x ; ν1) + U(x ; ν2)− `1

)
,

whenever xj ,2n → x ∈ [a∗, b2].

The weights |λ(1)
j ,2n| (n + 1 ≤ j ≤ 2n) grow exponentially fast if

2U(x ; ν1) + U(x ; ν2) > `1

The weights decrease to zero exponentially fast if
2U(x ; ν1) + U(x ; ν2) < `1.
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Example: two equal length intervals

The function 2U(z ; ν1) + U(z ; ν2) for [−3.26,−1] and [1, 3.26]
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Example: two intervals of different length

The function 2U(z ; ν1) + U(z ; ν2) for [−1, 0] and [0, 1
4
]
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Example: two intervals of different length

The function 2U(z ; ν1) + U(z ; ν2) for [−1, 0] and [0, 1
4
] (detail)
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Convergence result: equal length intervals

Theorem (Lubinsky-WVA)

Suppose both intervals [a1, b1] and [a2, b2] are of the same size
and let b1 < a2. If f is continuous on [a1, b1] and [a2, b2], then

lim
n→∞

2n∑
j=1

λ
(1)
j ,2nf (xj ,2n) =

∫ b1

a1

f (x) dµ1(x),

lim
n→∞

2n∑
j=1

λ
(2)
j ,2nf (xj ,2n) =

∫ b2

a2

f (x) dµ2(x).
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Example: two intervals of equal length

The potentials U(z ; ν1) and U(z ; ν2)
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Example: two intervals of different length

The potentials U(z ; ν1) and U(z ; ν2)
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Hermite-Padé approximation

Let

g1(z) =

∫ b1

a1

dµ1(x)

z − x
, g2(z) =

∫ b2

a2

dµ2(x)

z − x
.

Hermite-Padé approximation to (g1, g2):

g1(z)Pn,n(z)− Q2n−1(z) = O
( 1

zn+1

)
,

g2(z)Pn,n(z)− R2n−1(z) = O
( 1

zn+1

)
.

Then

Q2n−1(z)

Pn,n(z)
=

2n∑
j=1

λ
(1)
j ,2n

z − xj ,2n
,

R2n−1(z)

Pn,n(z)
=

2n∑
j=1

λ
(2)
j ,2n

z − xj ,2n
.

Walter Van Assche Simultaneous Gaussian quadrature
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Hermite-Padé approximation

2n∑
j=1

λ
(1)
j ,2nf (xj ,2n) =

1

2πi

∫
Γ
f (z)

Q2n−1(z)

Pn,n(z)
dz ,

2n∑
j=1

λ
(2)
j ,2nf (xj ,2n) =

1

2πi

∫
Γ
f (z)

R2n−1(z)

Pn,n(z)
dz ,

where Γ is a closed contour around [a1, b1] ∪ [a2, b2].
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Convergence for analytic functions

Theorem

If f is analytic in a domain Ω that contains
C 1

γ = {z ∈ C : 2U(z ; ν1) + U(z ; ν2)− `1 > γ} with γ < 0, then

lim sup
n→∞

∣∣∣∣∣∣
2n∑
j=1

λ
(1)
j ,2nf (xj ,2n)−

∫ b1

a1

f (x) dµ1(x)

∣∣∣∣∣∣
1/n

≤ eγ .

If f is analytic in a domain Ω that contains
C 2

γ = {z ∈ C : U(z ; ν1) + 2U(z ; ν2)− `2 > γ} with γ < 0, then

lim sup
n→∞

∣∣∣∣∣∣
2n∑
j=1

λ
(2)
j ,2nf (xj ,2n)−

∫ b2

a2

f (x) dµ2(x)

∣∣∣∣∣∣
1/n

≤ eγ .
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Conclusion

Two quadrature rules with 2n nodes are exact for polynomials
of degree ≤ 3n − 1

Convergence for continuous functions if the intervals are of
the same size

Problems if the intervals are not of the same size: no
convergence on the largest interval

Quadrature weights are not all positive and some can grow
exponentially

Not recommended for Angelesco systems with intervals of
different size.

More useful for measures having the same support, e.g.,∫ ∞

−∞
f (x)e−x2+c1x dx ,

∫ ∞

−∞
f (x)e−x2+c2x dx ,

∫ ∞

−∞
f (x)e−x2+c3x dx

where ci/2 are the wavelengths for red, blue, green and f is a
light signal.
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