Robust control in multidimensional systems

Sanne ter Horst ¹ North-West University

SANUM 2016 Stellenbosch University

Joint work with J.A. Ball

¹This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Numbers 93039, and 93406). \square

Discrete time linear systems (1D case)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider the discrete time linear system

$$\Sigma := \begin{cases} x(n+1) &= Ax(n) + B_1w(n) + B_2u(n) \\ v(n) &= C_1x(n) + D_{11}w(n) + D_{12}u(n) \\ y(n) &= C_2x(n) + D_{21}w(n) \end{cases} (n \in \mathbb{Z}_+)$$

with system matrix

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & B_1 & B_2 \\ C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & 0 \end{bmatrix} \in \mathbb{C}^{(n+s+p)\times(n+r+q)}$$

and transfer function

$$G(\lambda) = D + \lambda C(I - \lambda A)^{-1}B.$$

Discrete time linear systems (1D case)

Consider the discrete time linear system

$$\Sigma := \begin{cases} x(n+1) &= Ax(n) + B_1w(n) + B_2u(n) \\ v(n) &= C_1x(n) + D_{11}w(n) + D_{12}u(n) \\ y(n) &= C_2x(n) + D_{21}w(n) \end{cases} (n \in \mathbb{Z}_+)$$

with system matrix

$$\left[\begin{array}{cc}A & B\\C & D\end{array}\right] = \left[\begin{array}{cc}A & B_1 & B_2\\C_1 & D_{11} & D_{12}\\C_2 & D_{21} & 0\end{array}\right] \in \mathbb{C}^{(n+s+p)\times(n+r+q)}.$$

and transfer function

$$G(\lambda) = D + \lambda C(I - \lambda A)^{-1}B.$$

Taking x(0) = 0, the Z-transforms $\hat{w}(z) = \sum w(n)z^n$, \hat{u} , \hat{v} , \hat{y} are related through

$$\begin{bmatrix} \hat{v}(z)\\ \hat{y}(z) \end{bmatrix} = G(z) \begin{bmatrix} \hat{w}(z)\\ \hat{u}(z) \end{bmatrix}$$

Want:

Stability (*G* analytic in $\mathbb{D} = \{z \colon |z| < 1\}$) & Performance $(\sup_{z \in \mathbb{D}} ||G(z)|| \le 1)$.

No stability & Performance: Find a controller $K \sim \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix}$ so that the closed loop system Σ_{cl} with transfer function G_{cl} has stability and/or performance:

No stability & Performance: Find a controller $K \sim \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix}$ so that the closed loop system Σ_{cl} with transfer function G_{cl} has stability and/or performance:

Frequency domain approach

Assume a stabilizing controller K exists and let G_{22} have double co-prime factorization

$$G_{22} = M^{-1}N = \widetilde{N}\widetilde{M}^{-1} \begin{bmatrix} M & -N \\ -\widetilde{Q} & \widetilde{P} \end{bmatrix} \begin{bmatrix} P & \widetilde{N} \\ Q & \widetilde{M} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}.$$

Then all stabilizing solutions are of the form $K = (Q + \widetilde{M}\Lambda)(P + \widetilde{N}\Lambda)^{-1}$ with Λ stable, $\sup_{z \in \mathbb{D}} \|\Lambda(z)\| < \infty$ s.t. $\det(P + \widetilde{N}\Lambda) \neq 0$.

No stability & Performance: Find a controller $K \sim \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix}$ so that the closed loop system Σ_{cl} with transfer function G_{cl} has stability and/or performance:

Frequency domain approach

Assume a stabilizing controller K exists and let G_{22} have double co-prime factorization

$$G_{22} = M^{-1}N = \widetilde{N}\widetilde{M}^{-1} \begin{bmatrix} M & -N \\ -\widetilde{Q} & \widetilde{P} \end{bmatrix} \begin{bmatrix} P & \widetilde{N} \\ Q & \widetilde{M} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}.$$

Then all stabilizing solutions are of the form $K = (Q + \widetilde{M}\Lambda)(P + \widetilde{N}\Lambda)^{-1}$ with Λ stable, $\sup_{z \in \mathbb{D}} \|\Lambda(z)\| < \infty$ s.t. $\det(P + \widetilde{N}\Lambda) \neq 0$. Performance corresponds to

$$\sup_{z \in \mathbb{D}} \|\widetilde{G}_{11} + \widetilde{G}_{12} \Lambda \widetilde{G}_{21}\| \leq 1 \quad (=\text{Model Matching Problem})$$

for $\widetilde{G}_{11} = G_{11} + G_{12} Q G_{21}$, $\widetilde{G}_{12} = G_{12} \widetilde{M}$, $\widetilde{G}_{21} = M G_{21}$.

٠

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Time domain/state space approach

The closed loop transfer function G_{cl} has system matrix

$$\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A + B_2 D_K C_2 & B_2 C_K & B_1 + B_2 D_K D_{21} \\ B_K C_2 & A_K & B_K D_{21} \\ C_1 + D_{12} D_K C_2 & D_{12} C_K & D_{11} + D_{12} D_K D_{21} \end{bmatrix}$$

Time domain/state space approach

The closed loop transfer function G_{cl} has system matrix

$$\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A + B_2 D_K C_2 & B_2 C_K & B_1 + B_2 D_K D_{21} \\ B_K C_2 & A_K & B_K D_{21} \\ C_1 + D_{12} D_K C_2 & D_{12} C_K & D_{11} + D_{12} D_K D_{21} \end{bmatrix}$$

TFAE

- $\exists K \text{ s.t. } A_{\mathsf{cl}} \text{ is stable } (\sigma(A_{\mathsf{cl}}) \subset \mathbb{D}) \ (\Rightarrow G_{\mathsf{cl}} \text{ stable})$
- $\exists F, L \text{ s.t. } A + BF \text{ and } A + LC \text{ stable (operator stabilizable/detectable)}$
- Im $[I zA B_2] = \mathbb{C}^n$ and Im $[I zA^* C_2^*] = \mathbb{C}^n$, $z \in \overline{\mathbb{D}}$ (Hautus stab/det)
- $\exists X, Y > 0$ s.t. $AXA^* X B_2B_2^* < 0$ and $A^*YA Y C_2^*C_2 < 0$

Time domain/state space approach

The closed loop transfer function G_{cl} has system matrix

$$\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \begin{bmatrix} A + B_2 D_K C_2 & B_2 C_K & B_1 + B_2 D_K D_{21} \\ B_K C_2 & A_K & B_K D_{21} \\ C_1 + D_{12} D_K C_2 & D_{12} C_K & D_{11} + D_{12} D_K D_{21} \end{bmatrix}$$

TFAE

- $\exists K \text{ s.t. } A_{\mathsf{cl}} \text{ is stable } (\sigma(A_{\mathsf{cl}}) \subset \mathbb{D}) \ (\Rightarrow G_{\mathsf{cl}} \text{ stable})$
- $\exists F, L \text{ s.t. } A + BF \text{ and } A + LC \text{ stable (operator stabilizable/detectable)}$
- Im $[I zA B_2] = \mathbb{C}^n$ and Im $[I zA^* C_2^*] = \mathbb{C}^n$, $z \in \overline{\mathbb{D}}$ (Hautus stab/det)
- $\exists X, Y > 0$ s.t. $AXA^* X B_2B_2^* < 0$ and $A^*YA Y C_2^*C_2 < 0$

Performance

- Doyle-Glover-Khargonekar-Francis '89: Coupled Riccati equation solution
- Gahinet-Apkarian '94: Coupled LMI solution. $\exists X, Y > 0, \begin{bmatrix} X & I \\ I & Y \end{bmatrix} \ge 0,$

$$\begin{bmatrix} N_c & 0 \\ 0 & I \end{bmatrix}^* \begin{bmatrix} AYA^* - Y & AYC_1^* & B_1 \\ C_1YA^* & C_1YC_1^* - I & D_{11} \\ B_1^* & D_{11}^* & -I \end{bmatrix} \begin{bmatrix} N_c & 0 \\ 0 & I \end{bmatrix} < 0 \text{ and } \cdots$$

Multidimensional Givona-Roesser systems

Givone-Roesser (GR) systems

Now consider the system Σ over *d*-tuples in \mathbb{Z}_+ (with e_i the *i*-th unit vector):

$$\Sigma := \begin{cases} \begin{bmatrix} x_1(n+e_1) \\ \vdots \\ x_d(n+e_d) \end{bmatrix} = A \begin{bmatrix} x_1(n) \\ \vdots \\ x_d(n) \end{bmatrix} + B_1 w(n) + B_2 u(n) \\ v(n) = C_1 x(n) + D_{11} w(n) + D_{12} u(n) \\ y(n) = C_2 x(n) + D_{21} w(n) \end{cases} (n \in \mathbb{Z}_+^d),$$

where the state vector decomposes as $\mathbb{C}^n = \mathbb{C}^{n_1} \oplus \cdots \oplus \mathbb{C}^{n_p}$. Transfer function:

$$G(z) = D + C(I - Z(z)A)^{-1}Z(z)B, \quad Z(z) = \begin{bmatrix} z_1 I_{n_1} & & \\ & \ddots & \\ & & z_d I_{n_d} \end{bmatrix}, \quad z = (z_1, \ldots, z_d) \in \mathbb{C}^d.$$

Multidimensional Givona-Roesser systems

Givone-Roesser (GR) systems

Now consider the system Σ over *d*-tuples in \mathbb{Z}_+ (with e_i the *i*-th unit vector):

$$\Sigma := \begin{cases} \begin{bmatrix} x_1(n+e_1) \\ \vdots \\ x_d(n+e_d) \end{bmatrix} = A \begin{bmatrix} x_1(n) \\ \vdots \\ x_d(n) \end{bmatrix} + B_1 w(n) + B_2 u(n) \\ v(n) = C_1 x(n) + D_{11} w(n) + D_{12} u(n) \\ y(n) = C_2 x(n) + D_{21} w(n) \end{cases} (n \in \mathbb{Z}_+^d),$$

where the state vector decomposes as $\mathbb{C}^n = \mathbb{C}^{n_1} \oplus \cdots \oplus \mathbb{C}^{n_p}$. Transfer function:

$$G(z) = D + C(I - Z(z)A)^{-1}Z(z)B, \quad Z(z) = \begin{bmatrix} z_1 I_{n_1} & & \\ & \ddots & \\ & & z_d I_{n_d} \end{bmatrix}, \quad z = (z_1, \ldots, z_d) \in \mathbb{C}^d.$$

- Hautus stable: $\det(I Z(z)A) \neq 0$, $z \in \overline{\mathbb{D}}^d \Rightarrow G$ analytic on \mathbb{D}^d (stability)
- Performance: stability & $\|G\|_{\infty} := \sup_{z \in \mathbb{D}^d} \|G(z)\| \le 1$.

No stability & Performance: Find a GR controller $K \sim \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix}$ so that the closed loop system Σ_{cl} with transfer function G_{cl} has stability and/or performance.

State space stabilizability and detectability

Definition (Scaled stability) Set $\mathcal{D}_{\Sigma} = \{ \text{diag}(X_1, \dots, X_d) : X_i \in \mathbb{C}^{n_i \times n_i} \}$ (=communtant of

 $\{Z(z): z \in \mathbb{D}^d\}$). Then A is called *scaled stable* if:

 $\exists Q \in \mathcal{D}_{\Sigma}, Q \text{ invertible s.t. } \|Q^{-1}AQ\| < 1 \ (\Leftrightarrow \exists X \in \mathcal{D}_{\Sigma}, X > 0 \text{ s.t. } AXA^* - X < 0).$

In general: Scaled stability \neq Hautus stability (B.D.O Anderson et. al, 1986)

State space stabilizability and detectability

Definition (Scaled stability)

Set $\mathcal{D}_{\Sigma} = \{ \text{diag}(X_1, \dots, X_d) : X_i \in \mathbb{C}^{n_i \times n_i} \}$ (=communtant of $\{Z(z) : z \in \mathbb{D}^d\}$). Then A is called *scaled stable* if:

 $\exists Q \in \mathcal{D}_{\Sigma}, Q \text{ invertible s.t. } \|Q^{-1}AQ\| < 1 \ (\Leftrightarrow \exists X \in \mathcal{D}_{\Sigma}, X > 0 \text{ s.t. } AXA^* - X < 0).$

In general: Scaled stability \neq Hautus stability (B.D.O Anderson et. al, 1986)

Definition (state space stabilizability)

The system Σ , or pair $\{A, B_2\}$, is called:

- Hautus stabilizable if $\text{Im} [I AZ(z) B_2] = \mathbb{C}^n$ for all $z \in \overline{\mathbb{D}}^d$;
- operator stabilizable if: $\exists F$ such that $A B_2F$ is Hautus stable
- scaled stabilizable if: $\exists F$ such that $A B_2 F$ is scaled stable

Hautus, operator and scaled detectability of Σ , or $\{A, C_2\}$, is defined similarly.

State space stabilizability and detectability

Definition (Scaled stability)

Set $\mathcal{D}_{\Sigma} = \{ \text{diag}(X_1, \dots, X_d) : X_i \in \mathbb{C}^{n_i \times n_i} \}$ (=communtant of $\{Z(z) : z \in \mathbb{D}^d\}$). Then A is called *scaled stable* if:

 $\exists Q \in \mathcal{D}_{\Sigma}, Q \text{ invertible s.t. } \|Q^{-1}AQ\| < 1 \ (\Leftrightarrow \exists X \in \mathcal{D}_{\Sigma}, \ X > 0 \ \text{s.t. } AXA^* - X < 0).$

In general: Scaled stability \neq Hautus stability (B.D.O Anderson et. al, 1986)

Definition (state space stabilizability)

The system Σ , or pair $\{A, B_2\}$, is called:

- Hautus stabilizable if $\text{Im} [I AZ(z) B_2] = \mathbb{C}^n$ for all $z \in \overline{\mathbb{D}}^d$;
- operator stabilizable if: $\exists F$ such that $A B_2F$ is Hautus stable
- scaled stabilizable if: $\exists F$ such that $A B_2F$ is scaled stable

Hautus, operator and scaled detectability of Σ , or $\{A, C_2\}$, is defined similarly.

Then:

- Σ operator stabilizable & detectable $\Longrightarrow \exists K \text{ s.t. } \Sigma_{cl}$ is Hautus stable.
- Σ scaled stabilizable & detectable $\iff \exists K \text{ s.t. } \Sigma_{cl} \text{ is scaled stable.}$

Scaled H^{∞} problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Scaled performance, scaled H^∞ problem

The system Σ has *scaled performance* if there exists a $X \in \mathcal{D}_{\Sigma}$, X > 0 so that

$$\left[\begin{array}{cc}A & B\\C & D\end{array}\right]\left[\begin{array}{cc}X & 0\\0 & I_{\mathcal{W}\oplus\mathcal{U}}\end{array}\right]\left[\begin{array}{cc}A & B\\C & D\end{array}\right]^* - \left[\begin{array}{cc}X & 0\\0 & I_{\mathcal{W}\oplus\mathcal{U}}\end{array}\right] < 0.$$

Note: Scaled performance \Rightarrow A scaled stable & $\|G\|_{\infty} < 1$. Scaled H^{∞} problem: Find a controller K such that Σ_{cl} has scaled performance.

Scaled H^{∞} problem

Scaled performance, scaled H^∞ problem

The system Σ has *scaled performance* if there exists a $X \in \mathcal{D}_{\Sigma}$, X > 0 so that

$$\left[\begin{array}{cc}A & B\\C & D\end{array}\right]\left[\begin{array}{cc}X & 0\\0 & I_{\mathcal{W}\oplus\mathcal{U}}\end{array}\right]\left[\begin{array}{cc}A & B\\C & D\end{array}\right]^* - \left[\begin{array}{cc}X & 0\\0 & I_{\mathcal{W}\oplus\mathcal{U}}\end{array}\right] < 0.$$

Note: Scaled performance \Rightarrow A scaled stable & $\|G\|_{\infty} < 1$. Scaled H^{∞} problem: Find a controller K such that Σ_{cl} has scaled performance.

Theorem (Gahinet-Apkarian '94)

There exists a solution to the scaled H^{∞} -problem if and only if there exist $X, Y \in \mathcal{D}, X, Y > 0$ satisfying LMIs: $\begin{bmatrix} X & I \\ I & Y \end{bmatrix} \ge 0$ (coupling condition) and

$$\begin{bmatrix} N_c & 0 \\ 0 & I \end{bmatrix}^* \begin{bmatrix} AYA^* - Y & AYC_1^* & B_1 \\ C_1YA^* & C_1YC_1^* - I & D_{11} \\ B_1^* & D_{11}^* & -I \end{bmatrix} \begin{bmatrix} N_c & 0 \\ 0 & I \end{bmatrix} < 0 \text{ and } \cdots$$

Here N_c and N_o are full column rank matrices so that Im $N_c = \text{Ker}[B_2^* \ D_{12}^*]$ and Im $N_o = \text{Ker}[C_2 \ D_{21}]$.

Systems over rings

In the general setting of System over Rings (Vidyasagar et. al, '80s) the stability and performance problem can be reduced to a Model Matching Problem via coprime factorization (a.o. Quadrat '06).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Systems over rings

In the general setting of System over Rings (Vidyasagar et. al, '80s) the stability and performance problem can be reduced to a Model Matching Problem via coprime factorization (a.o. Quadrat '06).

What ring to choose?

First choice: Entries of G and K from

$$\mathbb{C}(z)_s = \{p/q \colon p, q \in \mathbb{C}(z), z \in \mathbb{C}^d, p/q \text{ bounded on } \mathbb{D}^d\}.$$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Systems over rings

In the general setting of System over Rings (Vidyasagar et. al, '80s) the stability and performance problem can be reduced to a Model Matching Problem via coprime factorization (a.o. Quadrat '06).

What ring to choose?

First choice: Entries of G and K from

$$\mathbb{C}(z)_s = \{p/q \colon p, q \in \mathbb{C}(z), z \in \mathbb{C}^d, p/q \text{ bounded on } \mathbb{D}^d\}.$$

Complications:

- For p/q ∈ C(z)_s WLOG p, q have no common factor, but thay can still have common zeros; d ≥ 3: zero varieties of p and q can touch in ∂D^d, while p/q remains bounded on D^d.
- Kharitonov et. al ('99): A arbitrary small perturbation in coefficients of q can give zeros inside \mathbb{D}^d .

Systems over rings

In the general setting of System over Rings (Vidyasagar et. al, '80s) the stability and performance problem can be reduced to a Model Matching Problem via coprime factorization (a.o. Quadrat '06).

What ring to choose?

First choice: Entries of G and K from

$$\mathbb{C}(z)_s = \{p/q \colon p, q \in \mathbb{C}(z), z \in \mathbb{C}^d, p/q \text{ bounded on } \mathbb{D}^d\}.$$

Complications:

- For p/q ∈ C(z)_s WLOG p, q have no common factor, but thay can still have common zeros; d ≥ 3: zero varieties of p and q can touch in ∂D^d, while p/q remains bounded on D^d.
- Kharitonov et. al ('99): A arbitrary small perturbation in coefficients of q can give zeros inside D^d.

Lin ('98): Work with

 $\mathbb{C}(z)_{ss} = \{p/q \colon p, q \in \mathbb{C}(z) \text{ coprime, } q \text{ no zeros in } \overline{D}^d\}.$

N.B. A Hautus stable \Rightarrow G has entries in $\mathbb{C}(z)_{ss}$. G and K entries in $\mathbb{C}(z)_{ss}$: Coprime factorization, reduction to Model Matching

Reduction to interpolation

Model Matching Problem

Given $T_1 \in \mathbb{C}(z)_{ss}^{p \times q}$, $T_2 \in \mathbb{C}(z)_{ss}^{p \times r}$, $T_3 \in \mathbb{C}(z)_{ss}^{s \times q}$, find $\Lambda \in \mathbb{C}(z)_{ss}^{r \times s}$ such that

 $\|T_1+T_2\Lambda T_3\|_{\infty}\leq 1.$

Reduction to interpolation

Model Matching Problem

Given $T_1 \in \mathbb{C}(z)^{p \times q}_{ss}$, $T_2 \in \mathbb{C}(z)^{p \times r}_{ss}$, $T_3 \in \mathbb{C}(z)^{s \times q}_{ss}$, find $\Lambda \in \mathbb{C}(z)^{r \times s}_{ss}$ such that

$$\|T_1+T_2\Lambda T_3\|_{\infty}\leq 1.$$

Reduction to interpolation (special case)

Take p = q = s = 1 and $T_3 \equiv 1$. Write $T_2 = [T_{2,1} \ldots T_{2,r}]$. Hence $T_1, T_{2,1}, \ldots, T_{2,r} \in \mathbb{C}(z)_{ss}$. We seek $\Lambda_1, \ldots, \Lambda_r \in \mathbb{C}(z)_{ss}$ so that

$$S = T_1 + T_{2,1}\Lambda_1 + \dots + T_{2,r}\Lambda_r \text{ satisfies } \|S\|_{\infty} \le 1. \tag{1}$$

Model Matching Problem

Given $T_1 \in \mathbb{C}(z)^{p \times q}_{ss}$, $T_2 \in \mathbb{C}(z)^{p \times r}_{ss}$, $T_3 \in \mathbb{C}(z)^{s \times q}_{ss}$, find $\Lambda \in \mathbb{C}(z)^{r \times s}_{ss}$ such that

$$\|T_1+T_2\Lambda T_3\|_{\infty}\leq 1.$$

Reduction to interpolation (special case)

Take p = q = s = 1 and $T_3 \equiv 1$. Write $T_2 = [T_{2,1} \dots T_{2,r}]$. Hence $T_1, T_{2,1}, \dots, T_{2,r} \in \mathbb{C}(z)$ ss. We seek $\Lambda_1, \dots, \Lambda_r \in \mathbb{C}(z)$ ss so that

$$S = T_1 + T_{2,1}\Lambda_1 + \dots + T_{2,r}\Lambda_r \text{ satisfies } \|S\|_{\infty} \le 1. \tag{1}$$

Assume the zero varieties of $T_{2,1}, \ldots, T_{2,r}$ intersect within $\overline{\mathbb{D}}^d$ only in finitely many points $z^{(1)}, \ldots, z^{(k)} \in \overline{\mathbb{D}}^d$. Set $w_j = T_1(z^j), j = 1, \ldots, k$. Then $S \in \mathbb{C}(z)_{ss}$ is of the form (1) if and only if

$$S(z^{(j)}) = w_j, \ j = 1, \dots, k$$
 and $\|S\|_{\infty} \leq 1.$

Model Matching Problem

Given $T_1 \in \mathbb{C}(z)^{p \times q}_{ss}$, $T_2 \in \mathbb{C}(z)^{p \times r}_{ss}$, $T_3 \in \mathbb{C}(z)^{s \times q}_{ss}$, find $\Lambda \in \mathbb{C}(z)^{r \times s}_{ss}$ such that

$$\|T_1+T_2\Lambda T_3\|_{\infty}\leq 1.$$

Reduction to interpolation (special case)

Take p = q = s = 1 and $T_3 \equiv 1$. Write $T_2 = [T_{2,1} \dots T_{2,r}]$. Hence $T_1, T_{2,1}, \dots, T_{2,r} \in \mathbb{C}(z)$ ss. We seek $\Lambda_1, \dots, \Lambda_r \in \mathbb{C}(z)$ ss so that

$$S = T_1 + T_{2,1}\Lambda_1 + \dots + T_{2,r}\Lambda_r \text{ satisfies } \|S\|_{\infty} \le 1. \tag{1}$$

Assume the zero varieties of $T_{2,1}, \ldots, T_{2,r}$ intersect within $\overline{\mathbb{D}}^d$ only in finitely many points $z^{(1)}, \ldots, z^{(k)} \in \overline{\mathbb{D}}^d$. Set $w_j = T_1(z^j), j = 1, \ldots, k$. Then $S \in \mathbb{C}(z)_{ss}$ is of the form (1) if and only if

$$S(z^{(j)}) = w_j, \ j = 1, \dots, k \quad \text{and} \quad \|S\|_{\infty} \leq 1.$$

Issues:

- Not finitely many points: interpolation along a variety
- Characterization of functions in C(z)ss?

What functions are transfer functions of stable GR systems?

Extend to analytic functions on \mathbb{D}^d and possibly infinite dimensional systems with contractive system matrices: $\|\begin{bmatrix} A & B \\ C & D \end{bmatrix}\| \leq 1$.

Theorem (Agler '00)

A matrix function G on \mathbb{D}^d is the transfer function of a contractive GR system, which implies I - Z(z)A invertible for $z \in \mathbb{D}^d$ and $||G||_{\infty} \leq 1$, if and only if G is analytic on \mathbb{D}^d , say $G(z) = \sum_{n \in \mathbb{Z}^d_+} G_n z^n$, and for any d commuting strict contractions X_1, \ldots, X_d on ℓ^2 we have $||G(X_1, \ldots, X_d)|| \leq 1$, where

$$G(X_1,\ldots,X_d)=\sum_{n\in\mathbb{Z}_+^d}G_n\otimes X^n,\quad\text{with}\quad X^n=X_1^{n_1}\cdots X_d^{n_d},\text{ if }n=(n_1,\ldots,n_d).$$

The class of such function is called the Schur-Agler class.

What functions are transfer functions of stable GR systems?

Extend to analytic functions on \mathbb{D}^d and possibly infinite dimensional systems with contractive system matrices: $\|\begin{bmatrix} A & B \\ C & D \end{bmatrix}\| \leq 1$.

Theorem (Agler '00)

A matrix function G on \mathbb{D}^d is the transfer function of a contractive GR system, which implies I - Z(z)A invertible for $z \in \mathbb{D}^d$ and $||G||_{\infty} \leq 1$, if and only if G is analytic on \mathbb{D}^d , say $G(z) = \sum_{n \in \mathbb{Z}^d_+} G_n z^n$, and for any d commuting strict contractions X_1, \ldots, X_d on ℓ^2 we have $||G(X_1, \ldots, X_d)|| \leq 1$, where

$$G(X_1,\ldots,X_d)=\sum_{n\in\mathbb{Z}_+^d}G_n\otimes X^n,\quad\text{with}\quad X^n=X_1^{n_1}\cdots X_d^{n_d},\text{ if }n=(n_1,\ldots,n_d).$$

The class of such function is called the Schur-Agler class.

Agler's interpolation theorem ('00)

Given $z^{(1)}, \ldots, z^{(k)} \in \mathbb{D}^d$ and $w_1, \ldots, w_k \in \mathbb{C}$, there exists a Schur-Agler function S so that

$$S(z^{(j)}) = w_j$$
 for $j = 1, \ldots, k$

if and only if there exists $k \times k$ matrices $P^{(1)}, \ldots, P^{(d)} \ge 0$ so that

$$1 - w_i \overline{w}_j = \sum_{l=1}^d (1 - z_l^{(i)} \overline{z}_l^{(j)}) P_{i,j}^{(l)}, \quad i, j = 1, \dots, k.$$

(ロ)、(型)、(E)、(E)、 E) のQの

Issues with Givone-Roesser systems

Desirable stability notion \neq computable stability notion; no minimality, controllability, observability, Kalman decomposition.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Issues with Givone-Roesser systems

Desirable stability notion \neq computable stability notion; no minimality, controllability, observability, Kalman decomposition.

Mathematical solution (2005–)

Evaluate in *d*-tuples of (possibly) noncommutative operators.

Different system: evolution along free semigroup in *d* letters, rather than \mathbb{Z}_{+}^d . Then minimality & Kalman decomposition extist; Hautus, operator & scaled stability coincide, etc.

Issues with Givone-Roesser systems

Desirable stability notion \neq computable stability notion; no minimality, controllability, observability, Kalman decomposition.

Mathematical solution (2005-)

Evaluate in *d*-tuples of (possibly) noncommutative operators. Different system: evolution along free semigroup in *d* letters, rather than \mathbb{Z}_{+}^{d} . Then minimality & Kalman decomposition extist; Hautus, operator & scaled stability coincide, etc.

Appeared earlier, and is still used, in engineering literature

- Lu-Zhou-Doyle '91: Notions of stability coincide
- Paganini '96, Packard '94: Gain scheduling with or without time-varying uncertainty parameters
- Poola-Tikku '95: slowly time-varying systems
- Köroğlu-Scherer '07: nonsquare blocks, bounds on time-variation
- Scherer-Köse '12: frequency-dependent *D*-scaling for gain-scheduled feedback configuration.

THANK YOU FOR YOUR ATTENTION

For more details and proper references see:

• J.A. Ball and S. ter Horst, Robust control, multidimensional systems and multivariable Nevanlinna-Pick interpolation, *Oper. Theory Adv. Appl.* **203** (2010), 13–88.