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Discrete time linear systems (1D case)

Consider the discrete time linear system

Σ :=


x(n + 1) = Ax(n) + B1w(n) + B2u(n)

v(n) = C1x(n) + D11w(n) + D12u(n) (n ∈ Z+)
y(n) = C2x(n) + D21w(n)

with system matrix[
A B
C D

]
=

 A B1 B2

C1 D11 D12

C2 D21 0

 ∈ C(n+s+p)×(n+r+q).

and transfer function

G(λ) = D + λC(I − λA)−1B.

Taking x(0) = 0, the Z -transforms ŵ(z) =
∑

w(n)zn, û, v̂ , ŷ are related
through [

v̂(z)
ŷ(z)

]
= G(z)

[
ŵ(z)
û(z)

]
Want:
Stability (G analytic in D = {z : |z | < 1}) & Performance (supz∈D ‖G(z)‖ ≤ 1).



Discrete time linear systems (1D case)

Consider the discrete time linear system

Σ :=


x(n + 1) = Ax(n) + B1w(n) + B2u(n)

v(n) = C1x(n) + D11w(n) + D12u(n) (n ∈ Z+)
y(n) = C2x(n) + D21w(n)

with system matrix[
A B
C D

]
=

 A B1 B2

C1 D11 D12

C2 D21 0

 ∈ C(n+s+p)×(n+r+q).

and transfer function

G(λ) = D + λC(I − λA)−1B.

Taking x(0) = 0, the Z -transforms ŵ(z) =
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Closed loop system (1D case)

No stability & Performance: Find a controller K ∼
[
AK BK
CK DK

]
so that the closed

loop system Σcl with transfer function Gcl has stability and/or performance:

K

G

y�

u-

v -w-

q2�

q1-

Frequency domain approach

Assume a stabilizing controller K exists and let G22 have double co-prime
factorization

G22 = M−1N = ÑM̃−1

[
M −N
−Q̃ P̃

][
P Ñ

Q M̃

]
=

[
I 0
0 I

]
.

Then all stabilizing solutions are of the form K = (Q + M̃Λ)(P + ÑΛ)−1 with Λ

stable, supz∈D ‖Λ(z)‖ <∞ s.t. det(P + ÑΛ) 6= 0. Performance corresponds to

sup
z∈D
‖G̃11 + G̃12ΛG̃21‖ ≤ 1 (=Model Matching Problem)

for G̃11 = G11 + G12QG21, G̃12 = G12M̃, G̃21 = MG21.
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[
M −N
−Q̃ P̃

][
P Ñ
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Closed loop system (1D case)

Time domain/state space approach

The closed loop transfer function Gcl has system matrix[
Acl Bcl

Ccl Dcl

]
=

 A + B2DKC2 B2CK B1 + B2DKD21

BKC2 AK BKD21

C1 + D12DKC2 D12CK D11 + D12DKD21

 .

TFAE

• ∃K s.t. Acl is stable (σ(Acl) ⊂ D) (⇒ Gcl stable)

• ∃F , L s.t. A + BF and A + LC stable (operator stabilizable/detectable)

• Im [I − zA B2] = Cn and Im [I − zA∗ C∗2 ] = Cn, z ∈ D (Hautus stab/det)

• ∃X ,Y > 0 s.t. AXA∗ − X − B2B
∗
2 < 0 and A∗YA− Y − C∗2 C2 < 0

Performance

• Doyle-Glover-Khargonekar-Francis ’89: Coupled Riccati equation solution

• Gahinet-Apkarian ’94: Coupled LMI solution. ∃X ,Y > 0, [ X I
I Y ] ≥ 0,

[
Nc 0
0 I

]∗ AYA∗ − Y AYC∗1 B1

C1YA
∗ C1YC

∗
1 − I D11

B∗1 D∗11 −I

[Nc 0
0 I

]
< 0 and · · ·
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Multidimensional Givona-Roesser systems

Givone-Roesser (GR) systems

Now consider the system Σ over d-tuples in Z+ (with ei the i-th unit vector):

Σ :=



[ x1(n+e1)

...
xd (n+ed )

]
= A

[ x1(n)

...
xd (n)

]
+ B1w(n) + B2u(n)

v(n) = C1x(n) + D11w(n) + D12u(n)

y(n) = C2x(n) + D21w(n)

(n ∈ Zd
+),

where the state vector decomposes as Cn = Cn1 ⊕ · · · ⊕ Cnp . Transfer function:

G(z) = D+C(I−Z(z)A)−1Z(z)B, Z(z) =

 z1In1

. . .
zd Ind

 , z = (z1, . . . , zd) ∈ Cd .

• Hautus stable: det(I − Z(z)A) 6= 0, z ∈ Dd ⇒ G analytic on Dd (stability)

• Performance: stability & ‖G‖∞ := supz∈Dd ‖G(z)‖ ≤ 1.

No stability & Performance: Find a GR controller K ∼
[
AK BK
CK DK

]
so that the

closed loop system Σcl with transfer function Gcl has stability and/or
performance.
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State space stabilizability and detectability

Definition (Scaled stability)

Set DΣ = {diag (X1, . . . ,Xd) : Xi ∈ Cni×ni } (=communtant of
{Z(z) : z ∈ Dd}). Then A is called scaled stable if:

∃Q ∈ DΣ,Q invertible s.t. ‖Q−1AQ‖ < 1 (⇔ ∃X ∈ DΣ, X > 0 s.t. AXA∗−X < 0).

In general: Scaled stability 6= Hautus stability (B.D.O Anderson et. al, 1986)

Definition (state space stabilizability)

The system Σ, or pair {A,B2}, is called:

• Hautus stabilizable if Im [I − AZ(z) B2] = Cn for all z ∈ Dd
;

• operator stabilizable if: ∃F such that A− B2F is Hautus stable

• scaled stabilizable if: ∃F such that A− B2F is scaled stable

Hautus, operator and scaled detectability of Σ, or {A,C2}, is defined similarly.

Then:

• Σ operator stabilizable & detectable =⇒ ∃K s.t. Σcl is Hautus stable.

• Σ scaled stabilizable & detectable ⇐⇒ ∃K s.t. Σcl is scaled stable.
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Scaled H∞ problem

Scaled performance, scaled H∞ problem

The system Σ has scaled performance if there exists a X ∈ DΣ, X > 0 so that[
A B
C D

] [
X 0
0 IW⊕U

] [
A B
C D

]∗
−
[

X 0
0 IW⊕U

]
< 0.

Note: Scaled performance ⇒ A scaled stable & ‖G‖∞ < 1.
Scaled H∞ problem: Find a controller K such that Σcl has scaled performance.

Theorem (Gahinet-Apkarian ’94)

There exists a solution to the scaled H∞-problem if and only if there exist
X ,Y ∈ D, X ,Y > 0 satisfying LMIs: [ X I

I Y ] ≥ 0 (coupling condition) and

[
Nc 0
0 I

]∗ AYA∗ − Y AYC∗1 B1

C1YA
∗ C1YC

∗
1 − I D11

B∗1 D∗11 −I

[Nc 0
0 I

]
< 0 and · · ·

Here Nc and No are full column rank matrices so that ImNc = Ker [B∗2 D∗12]
and ImNo = Ker [C2 D21].
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Frequency domain

Systems over rings

In the general setting of System over Rings (Vidyasagar et. al, ’80s) the
stability and performance problem can be reduced to a Model Matching
Problem via coprime factorization (a.o. Quadrat ’06).

What ring to choose?

First choice: Entries of G and K from

C(z)s = {p/q : p, q ∈ C(z), z ∈ Cd , p/q bounded on Dd}.

Complications:

• For p/q ∈ C(z)s WLOG p, q have no common factor, but thay can still
have common zeros; d ≥ 3: zero varieties of p and q can touch in ∂Dd ,
while p/q remains bounded on Dd .

• Kharitonov et. al (’99): A arbitrary small perturbation in coefficients of q
can give zeros inside Dd .

Lin (’98): Work with

C(z)ss = {p/q : p, q ∈ C(z) coprime, q no zeros in D
d}.

N.B. A Hautus stable ⇒ G has entries in C(z)ss .
G and K entries in C(z)ss : Coprime factorization, reduction to Model Matching
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Reduction to interpolation

Model Matching Problem

Given T1 ∈ C(z)p×q
ss , T2 ∈ C(z)p×r

ss , T3 ∈ C(z)s×q
ss , find Λ ∈ C(z)r×s

ss such that

‖T1 + T2ΛT3‖∞ ≤ 1.

Reduction to interpolation (special case)

Take p = q = s = 1 and T3 ≡ 1. Write T2 = [T2,1 . . . T2,r ]. Hence
T1,T2,1, . . . ,T2,r ∈ C(z)ss . We seek Λ1, . . . ,Λr ∈ C(z)ss so that

S = T1 + T2,1Λ1 + · · ·+ T2,rΛr satisfies ‖S‖∞ ≤ 1. (1)

Assume the zero varieties of T2,1, . . . ,T2,r intersect within Dd
only in finitely

many points z (1), . . . , z (k) ∈ Dd
. Set wj = T1(z j), j = 1, . . . , k. Then

S ∈ C(z)ss is of the form (1) if and only if

S(z (j)) = wj , j = 1, . . . , k and ‖S‖∞ ≤ 1.

Issues:

• Not finitely many points: interpolation along a variety

• Characterization of functions in C(z)ss?
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S = T1 + T2,1Λ1 + · · ·+ T2,rΛr satisfies ‖S‖∞ ≤ 1. (1)

Assume the zero varieties of T2,1, . . . ,T2,r intersect within Dd
only in finitely

many points z (1), . . . , z (k) ∈ Dd
. Set wj = T1(z j), j = 1, . . . , k. Then

S ∈ C(z)ss is of the form (1) if and only if

S(z (j)) = wj , j = 1, . . . , k and ‖S‖∞ ≤ 1.

Issues:

• Not finitely many points: interpolation along a variety

• Characterization of functions in C(z)ss?



What functions are transfer functions of stable GR systems?

Extend to analytic functions on Dd and possibly infinite dimensional systems
with contractive system matrices: ‖ [ A B

C D ] ‖ ≤ 1.

Theorem (Agler ’00)

A matrix function G on Dd is the transfer function of a contractive GR system,
which implies I − Z(z)A invertible for z ∈ Dd and ‖G‖∞ ≤ 1, if and only if G
is analytic on Dd , say G(z) =

∑
n∈Zd

+
Gnz

n, and for any d commuting strict

contractions X1, . . . ,Xd on `2 we have ‖G(X1, . . . ,Xd)‖ ≤ 1, where

G(X1, . . . ,Xd) =
∑
n∈Zd

+

Gn ⊗ X n, with X n = X n1
1 · · ·X

nd
d , if n = (n1, . . . , nd).

The class of such function is called the Schur-Agler class.

Agler’s interpolation theorem (’00)

Given z (1), . . . , z (k) ∈ Dd and w1, . . . ,wk ∈ C, there exists a Schur-Agler
function S so that

S(z (j)) = wj for j = 1, . . . , k

if and only if there exists k × k matrices P(1), . . . ,P(d) ≥ 0 so that

1− wiw j =
d∑

l=1

(1− z
(i)
l z

(j)
l )P

(l)
i,j , i , j = 1, . . . , k.
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More recent developments

Issues with Givone-Roesser systems

Desirable stability notion 6= computable stability notion; no minimality,
controllability, observability, Kalman decomposition.

Mathematical solution (2005–)

Evaluate in d-tuples of (possibly) noncommutative operators.
Different system: evolution along free semigroup in d letters, rather than Zd

+.
Then minimality & Kalman decomposition extist; Hautus, operator & scaled
stability coincide, etc.

Appeared earlier, and is still used, in engineering literature

• Lu-Zhou-Doyle ’91: Notions of stability coincide

• Paganini ’96, Packard ’94: Gain scheduling with or without time-varying
uncertainty parameters

• Poola-Tikku ’95: slowly time-varying systems

• Köroğlu-Scherer ’07: nonsquare blocks, bounds on time-variation

• Scherer-Köse ’12: frequency-dependent D-scaling for gain-scheduled
feedback configuration.
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For more details and proper references see:

• J.A. Ball and S. ter Horst, Robust control, multidimensional systems and
multivariable Nevanlinna-Pick interpolation, Oper. Theory Adv. Appl. 203
(2010), 13–88.


