Convolutional Neural Networks in MATLAB

28 March 2019

Welcome

Danielle Winter

Application Engineer – Al and Data Science in Engineering

• Adri van Nieuwkerk

Business Development Consultant - Education

Musashi Seimitsu Industry Co.,Ltd.

Shell

Identified tags ready for OCR and integration into SAP

Copyright of Shell Global Solutions (UK)

• Feature extraction is painful

• Deep learning is getting more accurate

ILSVRC TOP-5 ERROR ON IMAGENET

zekedms:

fencer-x:

tigerlizii:

what a strange cat

that's not a cat. it let you pet its belly without biting.

dogs like rolling over on their back. maybe dog??

Look at this weird dog.

Source: veidolon

• Deep Learning is Cool!

- Introduction to concepts
 - Deep Learning checklist
 - Convolutional Neural Networks and layer architecture
- CNNs for non-image applications
- Some challenges and how to mitigate them
- Take Aways

- Introduction to concepts
 - Deep Learning checklist
 - Convolutional Neural Networks and layer architecture
- CNNs for non-image applications
- Some challenges and how to mitigate them
- Take Aways

Deep Learning Workflow

Deep Learning Workflow

Convolutional Neural Networks

CNN Architecture – Input Layer

<pre>imageInputLayer([5,5])</pre>				
7	14	-9	-2	5
13	-5	-3	4	6
-6	-4	3	10	12
0	2	9	11	-7
1	8	15	-8	-1

Image size: m*n*a

Colour image: a = 3 Multispectral image: a = many

CNN Architecture – Middle Layers

 Convolution of spatial filters with input image convolution2dLayer([2,2],50)

CNN Architecture – Middle Layers

 Convolution of spatial filters with input image convolution2dLayer([2,2],50)

activations (net, X, layer)

CNN Architecture – Middle Layers

reluLayer

-5 -2 -4

maxPooling2dLayer([3,3])

$$f(x) = \begin{cases} x, x \ge 0\\ 0, x < 0 \end{cases}$$

CNN Architecture – Final Layers

fullyConnectedLayer(2)

softmaxLayer()

classificationLayer()

- Introduction to concepts
 - Deep Learning checklist
 - Convolutional Neural Networks and layer architecture
- CNNs for non-image applications
- Some challenges and how to mitigate them
- Take Aways

CNNs for Non-Image Applications

CNNs for Non-Image Applications

- Introduction to concepts
 - Deep Learning checklist
 - Convolutional Neural Networks and layer architecture
- CNNs for non-image applications
- Some challenges and how to mitigate them
- Take Aways

Some Challenges

Building layer architecture

Some Challenges

- Building layer architecture
- Training Time
 - Use GPU

Some Challenges

- Building layer architecture
- Training Time
 - Use GPU
- Getting better performance
 - Learning rate
 - Epochs
 - Amount of data

- Introduction to concepts
 - Deep Learning checklist
 - Convolutional Neural Networks and layer architecture
- CNNs for non-image applications
- Some challenges and how to mitigate them
- Take Aways

Take-Aways

- Growing the Deep Learning Community in South Africa
 - Application-based research
- Deep Learning in MATLAB
 - Deep Learning Onramp Tutorial
 - MATLAB Onramp Tutorial

