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| Why are we here today?

Identified tags ready for OCR and integration into SAP

Musashi Seimitsu
Industry Co.,Ltd.

Copyright 2018 Opti-Num Solutions (Pty) Ltd



| Why are we here today?

«  Feature extraction is painful
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| Why are we here today?
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Deep learning is getting more accurate
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| Why are we here today?

* Deep Learning is Cool!

B o Sovrrer uive Comwaens s Feens

cup (5B.96 %)

goffesmug (30.18 %)

mixing bowl (10.19%)

Copyright 2018 Opti-Num Solutions (Pty) Ltd



| Agenda

Introduction to concepts
— Deep Learning checklist
— Convolutional Neural Networks and layer architecture

CNNs for non-image applications
Some challenges and how to mitigate them
Take Aways
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| Deep Learning Workflow
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| Deep Learning Workflow
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| Convolutional Neural Networks
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| CNN Architecture - Input Layer

imageInputLayer ([5,5]) Image size: m*n*a
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| CNN Architecture - Middle Layers

«  Convolution of spatial filters with input image
convolution2dLayer ([2,2],50)
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| CNN Architecture - Middle Layers

«  Convolution of spatial filters with input image

convolution2dLayer ([2,2],50) ;ctivations(net, X, layer)

? . . .
0% Copyright 2018 Opti-Num Solutions (Pty) Ltd



| CNN Architecture - Middle Layers
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| CNN Architecture - Final Layers
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| Agenda

CNNs for non-image applications

Copyright 2018 Opti-Num Solutions (Pty) Ltd



| CNNs for Non-Image Applications
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| CNNs for Non-Image Applications

Training Progress (30-Jul-2018 11:29:31)
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Some challenges and how to mitigate them

Copyright 2018 Opti-Num Solutions (Pty) Ltd

20



| Some Challenges
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| Some Challenges

- Building layer architecture e ‘ I
. . . Set options for training
« Training Time .

opts = trainingOptions (’sgdm’) ; )
_ Use GPU EEEEEEEEEE
Train the network EEEEEEEEEn
. H |
net = trainNetwork ... . GPU cores .
(XTrain, TTrain, layers, opts); . .. .. .. .. .
Make predictions L L L L L]
activations (net, XTrain, 6);

& ’\L@

=0 Copyright 2018 Opti-Num Solutions (Pty) Ltd 5

o




| Some Challenges
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«  Getting better performance
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Take Aways
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| Take-Aways

* Growing the Deep Learning Community in South Africa
— Application-based research

« Deep Learning in MATLAB
— Deep Learning Onramp Tutorial
— MATLAB Onramp Tutorial
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| Q&A

Questions & Answers
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