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Solace

No soft analysis (spaces).

No generalizations.



Background

Ideal isentropic gas.

Eulerian description: (introduced by d’Alembert)

ρ[vt + (v · ∇)v] +∇p = 0;

ρt +∇ · (ρv) = 0.

}

v = v(x, t); p = p(x, t); ρ(x, t)

observed at a fixed point x = (x , y , z) in space at time t.

Need a thermodynamic relation between ρ and p.
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Material coordinates

Lagrangian description (introduced by Euler).

Follow particle x in a reference configuration.

Reference
configuration At time t

Ψ(·, t)x X(t) = Ψ(x, t)

The moving body of gas consists of the same material.
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Conservation of mass

ρ(x) = J(x, t)σ(Ψ(x, t), t).

ρ(x) = mass density in the reference configuration.
J(x, t) = ∂X/∂x = Jacobian of Ψ.
σ(X, t) = mass density at time t.

This means that J(x, t) must be positive.
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Balance of linear momentum
Combined with conservation of mass:

ρ(x)vt(x, t) + J(x, t)[∇xΨ(x, t)]−T∇xp(x, t) = 0.

At time t:
v(x, t) = velocity of x.
p(x, t) = pressure experienced by x.
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Localization

G

G (t)

Reference
configuration At time t

Ψ(·, t)x

Compression:
r(x, t) := lim

|G |→0
x∈G

|G (t)| − |G |
|G | = J(x, t)− 1.

Acoustic assumption (from thermostatics):

[1 +
p(x,t)−p0

ρc2 ][1 + r(x, t)] = 1.

c = Thermostatic sound speed.
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Equations

The acoustic assumption (and Euler’s formula) leads to:

vt(x, t) +

[
c2

ρc2 + p(x, t)− p0

]
[∇xΨ]−T∇xp(x, t) = 0,

pt(x, t) + (ρc2 + p − p0)[∇xΨ]−T : ∇xv(x , t) = 0,

and the constraint:

1 +
p(x, t)− p0

ρc2 > 0.
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Scaling

Assume that ρ is constant. Let L be a chosen unit of length and let
T = L/c be the new unit of time. We scale to dimensionless
quantities in the following way:

x −→ x/L; t −→ t/T ;
v −→ v/c ; p −→ (p − p0)/ρc2.

The equations now become:
vt + [1 + p]−1[∇xΨ]−T∇xp = 0;

pt + [1 + p][∇xΨ]−T : ∇xv = 0.

Also:
1 + p > 0; Constraint.
(1 + p)(1 + r) = 1; Acoustic assumption (Boyle-Mariott).
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One-dimensional motion

Ψ(x, t) = (ψ(x , t), y , z).

The equations simplify to

vt(x , t) + px(x , t) = 0;

pt(x , t) + [1 + p(x , t)]2vx(x , t) = 0.

}

v = (v , 0, 0); −∞ < x <∞; t > 0.

The constraint:

1 + p(x , t) > 0.

Ensures that the system is hyperbolic.
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Wave equation

Eliminate v by (carefree) differentiation. The result:

ptt − 2
1+p [pt ]

2 − [1 + p]2pxx = 0.

Let’s get away from here!
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Dealing with the constraint

Substitution

1 + p(x , t) = exp{q(x , t)} > 0.

Equations:
vt(x , t) + exp{q(x , t)}qx(x , t) = 0;

qt(x , t) + exp{q(x , t)}vx(x , t) = 0.

}
Note:

– The system is symmetric hyperbolic.
– The roles of v and q cannot be interchanged.
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Invariants
More substitutions:

u1(x , t) = 1
2 [v + q]; u2(x , t) = 1

2 [v − q].

v = u1 + u2 ; q = u1 − u2 .
New equations:

u1,t + exp{q}u1,x = 0;

u2,t + exp{q}u2,x = 0.

}
Characteristics. C1 : x = X1(t); C2 : x = X2(t).

X ′
1
(t) = exp{q(X1(t), t)};

X ′
2
(t) = − exp{q(X2(t), t)}.

u1 is constant along C1;
u2 is constant along C2.
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Initial states

At time t = 0:
v(x , t)|t=0 = v0(x),

p(x , t)|t=0 = p0(x).

}

1 + p0(x) = exp{q0(x)} > 0.

u10 = u1 |t=0 = 1
2 [v0 + q0 ],

u20 = u2 |t=0 = 1
2 [v0 − q0 ].

}
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Inverse characteristics

A picture:

C2a1

t
=
0

x

a2 C1

t

(t, x)

a1 = a1(t, x) = X1(0); a2 = a2(t, x) = X2(0)

are called inverse characteristics.

u1(x , t) = u10(a1(t, x));

u2(x , t) = u20(a2(t, x)).
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Representations
X ′

1
(t) = exp{q(X1(t), t)}; X1(0) = a1(t, x); X1(t) = x .

x − a1(t, x) =

∫ t

0
X ′

1
(s) ds =

∫ t

0
exp{q(X1(s), s)} ds

= . . . . . .

= exp{u10(a1(t, x))}
∫ t

0
exp{−u2(X1(s), s)} ds.

Similarly,

a2(t, x)− x = exp{−u20(a2(t, x))}
∫ t

0
exp{u1(X2(s), s)} ds.
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ODE’s – first system

Differentiate ∂t and work hard. For fixed x :

[1 + (x − a1)u′
10

(a1)]a1,t = − exp{u10(a1)− u20(a2)};
[1 + (a2 − x)u′

20
(a2)]a2,t = exp{u10(a1)− u20(a2)}.

}

Let b1 = x − a1 > 0; b2 = a2 − x > 0. Then,

[1 + b1u
′
10

(x − b1)]b1,t = [1 + b2u
′
20

(x + b2)]b2,t .

Integrate (with appropriate substitutions).∫ b1

0
[1 + σu′

10
(x − σ)] dσ =

∫ b2

0
[1 + σu′

20
(x + σ)] dσ.
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Phase portrait

� To calculate a phase portrait. A possible algoritm:

1. Fix x .
2. Choose b1 .
3. Solve for b2 from∫ b1

0
[1 + σu′10(x − σ)] dσ =

∫ b2

0
[1 + σu′20(x + σ)] dσ.

4. Calculate: a1 = x − b1 ; a2 = x + b2 .
5. Change b1 . Go to 3.

. . .
6. Change x . Go to 2.
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Example portrait

t =
0

a1

a
2

x
=
0

0

0

Important: Unrestrained trajectories.
They define a useful new (warped) time.
Some areas are never visited.
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New times∫ b1

0
[1 + σu′

10
(x − σ)] dσ =

∫ b2

0
[1 + σu′

20
(x + σ)] dσ.

The trajectory will be unrestrained if for some x0 the equations
1 + σu′

10
(x0 − σ)] = 0;

1 + σu′
20

(x0 + σ) = 0,
have no positive solutions.
We may take x0 = 0.

Define new times:

τ1 = b1 = −a1 ,

τ2 = b2 = a2 .
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times ... ongoing

∫ τ1

0
[1 + σu′

10
(−σ)] dσ =

∫ τ2

0
[1 + σu′

20
(σ)] dσ.

t

a1

t =
0

−τ1

x
=
0

a
2

τ2

Properties:

I τ1 = τ1(t); τ2 = τ2(t).
I τ1 → τ2 is one-one.
I τ1(t)→∞; τ2(t)→∞ as t →∞.
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Solution curves

Aim: calculation of the curves x → v(x , t), x → p(x , t) for fixed
t > 0.
Recall the representations:

x − a1(t, x) = exp{u10(a1(t, x))}
∫ t

0
exp{−u2(X1(s), s)} ds;

a2(t, x)− x = exp{−u20(a2(t, x)}
∫ t

0
exp{u1(X2(s), s)} ds.

This time differentiate ∂x to obtain a second system of ODE’s:

[1 + (x − a1)u′
10

(a1)]a1,x = 1;

[1 + (a2 − x)u′
20

(a2)]a2,x = 1.

}
� Singularities can occur when terms in brackets are zero.
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Another inverted approach

Imagine x as a function of a1 or a2 .
Formally write (for fixed t):

dx1
da1

= 1 + (x1 − a1)u′
10

(a1);

dx2
da2

= 1− (a2 − x2)u′
20

(a2).

Point conditions: a1(t, 0) = −τ1 , a2(t, 0) = τ2 .

x1(−τ1) = 0;

x2(τ2) = 0.

Singularities at local extrema of x1 , x2 .
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Explicit solutions

Generalized pressures:

P1(a) := exp{u10(a)};
P2(a) := exp{−u20(a)}.

Explicit solutions:

x1(a1 ; τ1) = a1 +
τ1

P1 (−τ1 )
P1(a1);

x2(a2 ; τ2) = a2 −
τ2

P2 (τ2 )
P2(a2).
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Algorithm

1. Choose τ1 .
2. Calculate τ2 from∫ τ1

0 [1 + σu′
10

(−σ)] dσ =
∫ τ2
0 [1 + σu′

20
(σ)] dσ.

3. Choose x .
4. Calculate a1 from x1(a1 ; τ1) = x and a2 from x2(a2 ; τ2) = x .
5. Now,

u1(x , t) = u10(a1); u2(x , t) = u20(a2);

v(x , t) = u1 + u2 ; q(x , t) = u1 − u2 ; 1 + p(x , t) = exp{q}.
6. Change x . Go to 4.

. . .
7. Change τ1. Go to 2.
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Oops
�

We forgot about singularities!

Consider the curve on which a1 may be singular. That is where
1 + (x − a1)u′

10
(a1) = 0. It is denoted by Σ1 (after the river Styx)

and given by

x = S(a1) := a1 − 1
u′
10

(a1 )
.

Where the curve x1(a1 ; τ1) crosses Styx, x ′
1
(a1 ; τ1) = 0 and

P1 (−τ1 )
τ1

= −P ′
1
(a1).

If u′
10

(a1) > 0, P ′
1
(a1) = u′

10
(a1)P1(a1) > 0 and the crossing will

not happen.
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Some limited analysis

Assume:

I P ′
1
(a1) < 0 on some interval I = (A†

1
,∞).

I S1(a1)→∞ when a1 → A†1.

I The function S(a1) is strictly convex on I .

I τ1P
′
1
(−τ1) + P1(−τ1) > 0.
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Consequences

Let H1 (for Hades) be the region above Σ1 (Styx).

1. S(a1)→∞ as a1 →∞. Hades is quite large — and full of
musical amateurs.

2. The curve x = x1(a1 ; τ1)
I hits Σ1 only where x ′

1
(a1 ; τ1) = 0,

I is inside H1 if and only if x ′
1
(a1 ; τ1) < 0,

I is elsewhere if and only if x ′
1
(a1 ; τ1) > 0.

3. There is unique τ1c > 0 such that the curve x = x1(a1 ; τ1)
I is below Σ1 if 0 ≤ τ1 < τ1c ;
I touches Σ1 if τ1 = τ1c ;
I crosses H1 if τ1 > τ1c .
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Pictures that explain

A−
1 A1

X

x

τ1
= τ1c

Σ1

H1

a
1

Note: X = x1(A−
1

; τ1) = x1(A1 ; τ1); A−
1
< A1 .

Thus, if τ1 = τ1(t),
a1(X , t) = A−

1
and a1(X , t) = A1 .

a1 is multi-valued.

t

x

A−
1

A1

(t,X)

u1 is discontinuous.
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Discontinuities

Assume that P ′
2
(a2) > 0 for a2 ∈ I .

I Then a2(x , t) is single-valued.

I Recall that u1(x , t) = u10(a1(t, x))
and u2(x , t) = u20(a2(t, x)).

I There is a jump discontinuity in u1 at x = X .

I v(x , t) = u1(x , t) + u2(x , t)
and q(x , t) = u1(x , t)− u2(x , t).

I Thus v(x , t) and p(x , t) = exp{q(x , t)} − 1 are discontinuous
at x = X and some t > 0.

This is a shock phenomenon.
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The evolution of an explosion

Let us model an explosion in the following way:
v0(x) = 0

and
1 + p0(x) = exp{−x2}+ m; m ≥ 0.

Here is a picture:
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Watch this space.
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Velocity
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Synopsis

Inverse characteristics worked well for the particular system.
Warped time made things easier.
Shock discontinuities were easy to identify and calculate.
Newton-Raphson was the only numerical method used.
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Concluding unscientific postscript

Soft analysis hides more than it reveals.

Generalization will not make a problem go away.

Compute before you theorize before you compute.

When you show the moon to a child,
it will only see your finger.
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Concluding unscientific postscript

Thank you.

May the force be with you!
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