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PREFACE

During the period 15 March - 15 April 1975 Professor Lothar Collatz from
the University of Hamburg visited the Computer Science Department of the
University of Natal, Durban.

In order to stimulate interest in the research in and teaching of numerical
mathematics in South Africa, it was decided to organize a symposium to
coincide with his stay. This first South African Symposium on Numeérical
Mathematics was held in Durban on 10 and Il April, 1975. Apart from being
attended by most of the researchers active in this field, it was also
attended by Professor Fritz John from the Courant Institute for Mathematical

Sciences, New York.

The visit of Professor Collatz was sponsored by the Visiting Lecturers
Trust Fund of the University of Natal, Durban and the Alexander von

Humboldt Foundation, Bonn-Bad Godesberg, Germany,
In order to speed up the publication of the proceedings of the symposium

all papers and abstracts are published in the form they were received from

authors.

G.R. Joubert
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SUMMARY

MONOTONICITY IN NUMERICAL ANALYSIS

Collatz
University of Hamburg

There are two important tasks for Numerical Analysis.

2.

Development of new powerful and effective numerical methods for
computers.

Theoretical investigation of these methods, especially construction
of exact error bounds for the approximate solutions one has got on

the computer.

This lecture deals only with No. 2, for which functional analysis is a

very helpful aid. The most useful ideas are norms, distances and orderings;

the orderings are perhaps the most fundamental.

On the orderings'are'based the following ideas:

1.

2.

The comparability: Suppose f,g two elements of a partial ordered
space R with f<g, then they define an interval J = <f,g> = {h,f<h<g}
Lattices: If for every pair f,g €R exists inf (f,g) and sup (f,g)
then R is a lattice.

Operators T of monotonic type: they have the property, that Tf<Tg
implies f<g. Wide classes of linear and monlinear initial and boundary
value problems for ordinary and partial differential equations are
covered by the theory of operators of wonotonic type.

Monotone operators. T is called syntone (resp. antitone) if f<g
implies Tf<Tg (resp. Tf>Tg). A sum of a syntone and an antitone
operator is called a monotonically decomposible operator (M.D.O.).

For M.D.0. exists a theory for existence and inclusion of solutionms.
Every Hammerstein nonlinear integral operator is under weak conditioms
a M.D.O.

Applications to many differemt cases are described:

1.
2.
3.
4.

To inverse problems of boundary value problems in potential theory.

To expansive integral operators.

To monotonicity properties in the method of finite elements.

To mixed boundary value problems (Dirichlet-Neumann) conditions (example:
vertical laminer rivulet flow with gas-liquid interface) and many other

problems. 1.




GENERALIZED CONJUGATE DIRECTIONS IN FUNCTION OPTIMIZATION

D. J. van Wyk

Department of Pure and Applied Mathematics
Potchefstroom University for C.H.E.
Potchefstroom




Many algorithms for the unconstrained optimization of a function
f(x), xé.Rn, consist basically of the following iteration. Starting with
an initial approximation x° of the minimum point X,

i+ .
xl 1 = xl + uisl' i=0;1;2;..., )

where the parameter o, is choaen.to minimize f(x:‘L + asi) as a function of the
single variable 0. The vector s' can therefore be interpreted as a direction
in which we move from xi with xi+l the optimal point in this direction.
Such a method is called a conjugate direction method if the directioms

satisfy the following condition,

Definition: A set of non—zero vectors uc,w.tl,...,i.tn-l are called conjugate
to each other with respect to a given positive definite symmetric matrix A
if
iT .

u' A = 0, i#j.
A genersl method to produce a set of A-conjugate vectors is the Gram~Schmidt
orthogonolization procedure. Starting with a set of n linearly independent
vectors {v'}, the conjugate set {u'} cam be developed by application of the

recursion formula

T
1 k+1 k™, k+l
uk*l s o Av B O uk)
1T K, k
u Au u Au

The theory of conjugate directions in function minimization relates almost
entirely to quadratic functions. The main reason for this is that the
behaviour of a minimization algorithm on a quadratic function is indicative of
its behaviour in the neighbourhood of the minimum of a general function

f(x), since near the minimum f(x) can be approximated by a quadratic., The
importance of conjugate directions in the minimization of quadratic functions
is stressed by the following theorem.

Theorem: If the iteration (1) is applied to a quadratic fumetion with
positive definite Hessian G and the directions l".ll,....c"l"I ars

G-conjugate, then the minimum is found in at most n iterations, snd moreover,

every x' is the minimum point in the subspace generated by the initial
. i . P o _1 n-1!
approximation x° and the directions s 15 4.e0y8 .

The minimization of a quadratic function is equivalent to the solution of
a set of linear equations. The idea of using the property of conjugacy was
originally applied to the latter problem. The prototype for this class

of algorithme was described by Fox, Huskey and Wilkinson (1948); for the

equations Gx+b=o, with G an nxn matrix and be,Rn,

gk"l . ka l*b
k=17 %=1

My = - 2___55____ k=132;...30 (2)
k-1 k-1
u Gu

k

ey

The directions uo,...,un_l were constructed recursively as linear combinations
of the unit vectors in such a way that they were conjugate. The well~known
conjugate gradient method wae discovered independently by Hestenmes and

Stiefel (1952) and is a special case of (2).

It can be shown that the coefficient oy in (1) can be expressed by

if the iteration is applied to a quadratic function of the form
£(x) = avh x+}x Gx, 3

where the gradient g(xi) - 31. Thus, the similarity between (1) and (2)

is obvious if the directions s® in (1) are conjugate.

Stewart (1973) introduced a generalization of the notion of conjugacy leading
to a variety of finitely terminating iterations for solving systems of

linear equations. We have found that an adaptation of Stewart's ideas to
minimization problems establishes a similar generalization of the conjugate

direction algorithm for function minimization.




We note that the definition of conjugacy can alsec be phrased as follows,

o 1 n~1
If the vectors u ,u ,...,u are the colums of an n*n matrix U, then they

s : T . s
are A-conjugate if U AU is diagonal. The generalization is achieved by
introducing a second set of vectors v°,...,vn-l

Definition: Let A,U and V be non-singular nxn matrices. Then (U,V) is an
A-conjugate pair if vTAU is lower triangular.

The generalized algorithm for solving the equations Gx+b=o is a slight
variant of (2):

gk-’ - ka_l+b
Kol k1

Pt =~ _-L_k-lT = k=1325...3n, (4)
v Gu

L xk-l*uk_luk_]

-.1 -
Wueu-&%unf de-&ﬂan]J&maGwmhnupﬂm

Stewart developed an algorithm for comstructing an A-conjugate pair as
follows. Given unon-singular matrices V,A and P, the vector u¥ is
determined as a linear combination of po,pl,...,pk(k-o;...;n—l) such that

U and V are A-conjugate. The resulting algorithm is:

uO- O
8.p
T
o”, 1
o A Bl(pl' v TAE v°)
. v° Au®
T T T
o k 17, k k=17, k
uk - Sk(pk' v TAE - X TAE gl I = Ap uk-l)
© Aau® v! Au! &1 L

The constants 8, are chosen to give uk some predetermined scaling,

The analogous generalized conjugate direction method for the minimization
of a function f£(x) we formulate as follows. Suppose U and Vform a
conjugste pair:

(] »
x = arbitrary
o o
g =g(x)
For i=o0;l13...,
e I S i, i
X = X +0,v", where o, minimizes £(x +ov )

A . * P |
gt = gxh), gt =g (5)

. . )
= 1. xM+8.ut,

i
Regarding this algorithm, it is possible to show that the B; are equivalent

to the U in (4), as well as to prove the following theorem,

Theorem: If the iteration (5) is applied to.the quadratic (3), where (U,V)
form a G-conjugate pair, the minimum is found in at most n iteratioms and

moreover, »° lies in the subspace generated by x° and vo,....v -1.

By varying the choice of the vectors vi and pi in the conjugation algorithm,
one may therefore obtain from (5) various finitely terminating iterations for
minimization. When applied to a general function the Hessian G can ?ET
eliminated from the conjugation algorithm by substituting a%{gl+l '31)

for vi G. Putting the scaling constants equel to 1, the chzice of V=U reduces
the conjugation algorithm to the Gram—Schmidt procedure and (5) becomes an
ordinary conjugate direction algorithm. Finally, we can show that in this

case variation of the vectors p' leads to some well-known algorithms.

The Fletcher and Reeves (1964) algorithm: The conjugate directions in the

basic iteration (1) are defined by

o o
8§ = -g,
k k Kk k-1 )
s .-34-__5_’[.5.__5 s k=132;5...;30-1.
k=1 k-t
8 4

If the columns of P are chosen successively, P = [-go,-sl,...,-gn“l],

the directions uk in the generalized conjugation algorithm reduce to these

k
8



The Fletcher and Powell (1963) algorithm: Here the conjugate directions are

defined recursively by

ol = -ulgl,
where H is initially (i=0) any positive definite symmetric matrix, and
thereafter

i - H1~l . Al-] - Bl‘l

T

i-1 i-} : PR sy T .
i g:8" s : i=1, i d=1, i i-1," i-1
with A’ L. st T 5 B* 1 E_(g-g T) (g-g )H . Bi being
i-1T 5 o s iLg E L
st (81‘81 l) (81‘81 l) ut 1(31_81 !)

the steplength. Myers (1968) showed that if the initial direction is
chosen as steepest descent (as is usually the case) the directions in this
method are respectively scalar multiples of those in the Fletcher-Reeves
method. Hence, theoretically the same choice of P would lead to this
method,

The Smith (1962) and Powell (1964) algorithms without derivatives: Both
these methods, Powell's being an improvement om Smith's, consist of basic
computation cycles. We will only describe Powell's. To distinguish the
vectors in the different cycles the cycle number will be used as vector
subscripts,

Cycle I: rl° e, rll = ez...., tln—l = ot x]° = arbitrary,
ok aee . i_ _ i-) i-1
For isl;...; n, x, x, + Al,i-l T, , where Al,i—l
minimizes £(x *”' + a, B

Cycle 2: rzo =r L ez, T L. r o e3,..., rzn-Z = r Bt et

1 2 1 1 :
n-1] . n~-1 p
i 1. x®-x%= 3 A, . rl= 5 oA, . e1+].
2 1 | I ,i T1 7, 1,1
img imo
x2° - xln + X! r, °, where XI minimizes f(xln + Ar n—l)

i i1
2 =% 2,i-1 T2 » vhere }) . |

i=1 i-1
minimizes f(x, +Ar, )

. n-1 .

° 1o el = T A, . e1+], e
Cycle mn: LA e Ty -1 {=0 1,i
n-1 1 o n-l i
- - o i n-i_, o N
P2l L g An_z i Tn-2® 'n Xn=1" Fp-1 155 n-1,i "n-1
n n-1 im0 ’ 1
n n=
X r-1 A inimizes £(x__. + A )
xn° = xg-l * kn-l Ty » Vhere An—l o n-1 n
i i-1 i-1 here A_ .
For i=1;...;3n, X © =X + An,i-l LN n,i-1
i-1 i-1
minimizes f(xn + Arn )
After the n~th cycle the n directions are
n~l i+l 1 2 n~1 i
=rle ¢ Al i et , s = LA _Z A2,i Tys oo
& im0 °? imo
n-l :
R A NP
jmo Pt

which can be shown to be conjugate, These are the same as the u in the

conjugation algorithm for the choice of

n-1 . n-2 142 n-k i+k f]
B RE R N I Ll PP W] B
imo 1,1 i=o ol imp ’

The Portan method of Shah, Buehler and Kempthrone (1964): Here the iteration
is

x - - uoso.
and for iTI;..:;n,

i i
2= x' - g,

. . i i"l
31+I =zl ¢ Ai(z -x ),

where the Y, and the Ai are chosen by optimum line searches. We can write

the iteration as

el L [—gi +m,_ (x - Xl_l)]:
mi i=1



1 X
where m, = ——— 454 -t N :
= . [¢] R
Hg (1A Uy Gy Tetishauer (1959) showed

that the Flatcher-Reeves method can be written in exactly this way if
T
it i
iy iR
1 oTi s i-1
it i
g 8

: . i 5

J The points x~ obtained by the Partan method would therefore be the same
as those obtained by the Fletcher~Reeves method if the two definitions for
m, and n;.y vere the same. This is indeed the case;

the directions are
therefore theoretically the same in the two methods.
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NON-LOCAL CONVERGENCE OF NEWTON~RAPHSON ITERATION

R. M. Walker

Department of Applied Mathematics
University of the Witwatersrand
Johannesburg




Whittaker and Robinson in Chapter Six of their book
"Calculus of Observations" sghow that "if f(x) = 0 has a
root between %, and X, and if £'(x) and £f"(x) do not
vanish in the interval [xl,xzj, then Newton-Raphson converges
to the root if the iteration is started from the bound where
f(x}) and £"(x) have the same gign. The convergence is al-

80 monotonic". This is an example of non-local convergence.

A second example of non-local convergence is contained in
the following theorem:
Theorem 1. Suppose two real values of X, X, and xB, exist
(xB > xA) such that f(xB) > 0 and f(xA) < 0 and that
£'(x) >0 for x e [xA.xB], and that

£(xg) £(x,) .
xA"xB-Wx—BS- and xB-xA-f_rtx_A)_' (1.1)

[Thie means that when we apply the N-R iteration starting say
with X, we obtain xA’xB’xA’xB""' 80 that the iterative
Process may be said to "alternate". In any case it does not.

converge when either X4 ©F¥ xp are taken as initial values.]

Suppose also that £"(x) vanighes once ouly in the inter-
val [xA,iB]. and that the zerog of £'(x) are all real. Then
the N-R iteration converges if we start with an initial value
of x 1lying inside the interval [xA,xB].

Proof: Case 1. Suppose £(X) = 0 and £M(X) = ¢ where X
is the required root in the interval, [see FIGURE 21]. For
x >X £"(x) <0 and for x < X £%x) > o. Let X; be less

than XB and greater than X, and let
f(xl) f(xz)

Xy =%y - Fiie) B8 Egimxg = )

We first prove Xq < x

f(xz) f(x)J

= ¢(x2) = ¢{¢(X1)} [$(x) = x = ey

= Xww T mAra
X3 2 i'(xz)

1 fll )
dx3 d¢(x2) d¢(x1) f(xz)f (xz)f(x%i ;jl 1.2
’ ax, ' = ' 2 £l (x
vt dx1 dx2 dx1 £ (xz) 1
dx
. S 3—3 2 0.
G|
dx .
3 = X + ¢ we can clearly
For X)) = X, E;I = 0 and for x) |
' dx
3
choose o so that E;I < + 1.
5 2
d*x,  d*¢(xy) ]:d¢(x1)]z . aé(x,) a_¢(:1)
= dx
Also  gxr ax2 ax, %, ?

" 2
2 . £ F()E" ' (x)  _ 2f£(x)£"(x)
S8 o L B ISR

" £ £ (x)? _ £(x) ” - £ (x)E" " (x)]
- G - R - Fee e *

(1.3

£'(x) = 0 are all real it can be shown
This can then be used to shown

If the roots of
that £"(x)2 - £"'(x)£'(x) > O.

that
R 2 )
4% (x,) 47aiey 1.4
__E;TE— >0 and —*ng—‘ <0 ( )
2

so that a%x
3 > 0. (1.5)

dxf

i Xq»
We canmow sketch a rough graph of x; against 1

[See FIGURE 3.1



dx
For x, = x, - g, - becomes very large and tends to
i B dxl

+ ® as e+ 0, If therefore we plot two graphs Xy = ¢{¢(xl)}

and Xy = xi = Xy, i.e. we have reached the point where the
iterative process alternates (x3 =x, = xB)
o <
for X, Xy
<
£3, % =

Similarly it can be shown that x, > Xy

We now have a monotonic decreasing sequence X|sXgyXgyeoe
bounded below, and a monotonic increasing sequence XprXysXganeo
bounded above. They cannot tend to two different limits since
that would imply another alternating cycle which from FIG. 2 is
impossible. Therefore both sequences tend to the same limit,

namely the root X,

Case 2. The more general case of £"(X) ; 0. Let f"(xi) = 0.
For X, lying between X and x; N-R converges in the monotonic
sequence of Whittaker and Robinson.

dx E(x,)E"(x,)£(x,)E"(x,)

As before E;é = 2 22 : !
1 £1(x,) 78 (x )2
d
X3 =0 (2) when x, = X, (b) when x, = X, (¢) when
dx l 2
1

X = X, Thus the graph of Xg against X, has three turning
points, The maximum of these three is at x; = x. and clearly

x3(xi) < x - xi.

1

[See FIG 4 and FIG 5.]
dx

3
When x, is chosen so that %, = X, clearly dxl = 0 and
Xy = X. When X, is greater than this value but less than Xg
d2x3
we can show as in Case 1 that 2 > 0.

dx1

Ae before X4 < xy when %y < Xy and xg > X. We thus
have a monotonic decreasing sequence Xy a3y Xgas oo until
the value of a lies in the interwval [X,xi] when N-R con-

verges by the Whittaker and Robinson case.

Note: If £"(x) wvanishes once only in the interval [xA’xB]
and if there are no other alternating pairs in the interval,
then N-R converges if we start with a value of x 1lying
within the interval [xA,xﬁ]. In other words, it is not
necessary then to assume that the zeros of £'(x) ‘are all

real.

In 1946 Dr. E. Bodgwig proved that, if the roots of an al-
gebraic equation are real and distinct, Laguerre's iteration
converges no matter what real value is taken for the starting
point. An identical result is clearly not true for N-R
iteration since for example the points for which f£'(x) = 0
are points of non-convergence. However a similar proposition
vhich the author thinks is true but which he has been unable

to prove in its entirety is the following:

Hypothesis 2: Suppose the roots of a polynomial are all real.
Then the points of non-convergence of the Newton—Raphson itera-

tion form a set of measure zero.

Partial proof:  First, enumerate the basic points of non-con-
vergence. The points for which f£'(x) = 0 come into this
category. [There will be <{n-1) of them if the algebraic
equation is of degree n.,] Then the points for which N-R al-
ternates as in Theorem 1 are also points of non-convergence.

These will also be finite in number as can be seen by elimina-

ting X, between the two equations (1.1). We can, however,
also obtain points of non-convergence by an extemnsion of the
alternating phenomenon. e.g. suppose

f(xA)

Xg = X, - ?TT;IT f ¢(xA); Xo = ¢(XB); Xy = ¢(xcg§

(2.1)

17.



Thus the points xA,xB and Xq form a repetitive cycle.
Clearly we could have four or more points forming a repeti-
tive cycle. All such points are points of non-convergence.
By elimination, as with the 2-cycles, it is clear that there
will be a finite number of points corresponding to each such
repetitive cycle, The set of basic points of non-conver-

gence is a countable set. '

Consider now any one of these basic points and label it

Ay This point can be reached from a finite number of points
xﬁ which are the real roots of the equation
£(x)
x! - ———ET- = ¢(x') = x_.
N £'(xN) N N

Again each of these points can be reached from a finite set

"

of points Xy which are the real roots of ¢(%§) = x Con-

1)

N
tinuing in this way it can be seen that associated with Xy
there exists a countable infinity of points which lead by N-R
iteration to the point Xy

First number the basic points of non-convergence:

xll,x21,x31,...,xN1,... . Then number the points described
in the previous paragraph from which these basic points can be
reached: le’xNZ’xN3""’xNM"" N This double sequence of
points is clearly a countable set and is therefore of measure

zZero.

Consider however, a 3-cycle (xA,xB,xc) [see (2.1)1].
It is possible that an infinite N-R sequence exists

xl,xz,x3,... such that

xl,xl‘,xr..., ad XA

XgrXgaXgyeres > Xy (2.2)

XgsXeaXgsoeos * Xg o
If this occurs thenm it will be possible to find finite intecr-

vals about and x such that any initial value within

byt c
any one of these intervals coaverges by N-R to the 3-cycle.

In which case Hypothesis 2 is false.

We must therefore prove that these points in the various
cycles are points of repulsion with respect to direct Newton-
Raphson iteration. It can easily be shown that for the case

of the 3~cycle this implies

f(xA)f"(xA)f(xB)f"(xB)f(xc)f"(xc)
-f'(xA)2 f'(xB)2 f'(xc)!

Analogous inequalities should hold for the other cycles. We
have only been able to prove the Hypothesis for the quadra-
tic and cubic equations. The following are the lines of an

attempted proof.

Consider first the 2-cycles. Clearly the ones described
in Theorem 1 are points of repulsion with respect to Newton-
Raphson. Consider however a 2-cycle such as that in FIGURE
5. For points X, and Xy . As Xy p* X3 * xl. As
> 4o, "Suppose that there are more than

+ X

X * x x

¢ *3
one intersection with the line xs - Xy

Q'(xi) > 1 ¢'(xx) < 1.

But from (1l.4) ¢('(xx) > 0'(x£), we have a contradiction and
there is only one 2-cycle in this region.of the graph. Also
@’(xA) > 1. -~ Therefore the 2-cycle is repulsive to N-R

iteration.

Consider now a 3-cycle. [see FIGURE 7(b)]. Form an in-
verse Newton~Raphson sequence X sXgsXqaXpseus starting with

1 - - -
Xy such that f (xl) = 0. Then X, > x5 Xy < %, < Xy3

LR IRE PTE PRI
each point lies in the interval formed by the previous two

x, € X < etec. i.e. in the e
7 10 Xy c. 1.e. in the sequence

points. In other words, the sequence xl,x7,x13,... is
monotonic increasing and bounded above, while the seguence
X4rX193% 600 oo is monotonic decreasing and bounded below.

If we could prove that these two sequences tended to the same
limit, that limit would be a point in the 3-cycle and we would

have shown that the 3-cycle is attractive with respect to in-

19.



20.

verse N-R iteration (and therefore repulsive with respect
to direct N-R iteration.) However, it is possible that
the sequence converges to a 6-cycle, and the author has been
unable to prove that this is not the case. If in fact the
sequence does converge to a b6~cycle, then within that cycle
there will either be another 6-cycle or the 3-cycle repulsive
with respectto inverse N-R iteration. Thus in order to

prove the Hypothesis 2 one must show that the above sequence

converges to the 3-cycle. One can, however, prove that the
3-cycle is unique. For, suppose another 3-cycle exists in

the same regions of the real axis. Let the given cycle be
] ] ] ] T
(xA,xp,xC) and the second one be (xA,xB,xC) with x) < Xy
Then xé > Xp» xé < x. and xA > x, which is a contra=-
diction, Therefore the original 3-cycle (xA,xB,xc) is unique.

The same sort of analysis can be applied to any n-cycle

where n is odd.

Consider now a 4-cycle [FIGURE 7(¢)] As before form an
inverse N-R sequence XyaXgsXgseon starting with X such
that f'(xl) = 0. Clearly xl,xs,xg,... is a monotonic in-.
creasing sequence bounded above and therefore has a limit X,
(say) which is a point in the é4-cycle. Thus we have shown
that a 4-cycle exists which is attractive with respect to in-
verse N-R iteration. However we cannot as with the 3-cycle
show that this é4-cycle is unique with respect to the regions
within which the points of the 4-cycle lie. In fact if it
is not unique, then one can show that at least another two
4-cycles cxist, one of which is repulsive, the other attrac-
tive with respect to inverse N-R. Thus to prove Hypothesis

2 one must show that the 4-cycle is unique.

The same sort of analysis can be applied to any n-cycle

where n 1is even.

We can show however that Hypothesis 2 is true for

quadratics and cubics whose roots are all real. The proof

for quadratics is elementary and will not be given,

Theorem 3 Suppose the roots of a cubic equation are all
real. Then the points of non-convergence of Newton-Raphson

iteration form a set of measure zero.

Proof: First consider the case where the three roots
xl,xz and X3 are real and distinct. [x1 < X2 < X3].
Between the two zeros xi and Xi aof f'(x)fxi < xi] there

exists a 2-cycle (XA’XB) which by Theoxem 1 is unique. Again
by Theorem 1, starting with a value of x 1lying inside the
interval [xA,xBJ, N-R converges to the root X,. Also,
starting with a value of x within the interxval {XB,Xi] 5
say Xx;, we have a sequence 9% sXgseen such that

x4 > X8 X, <X, ete until the odd or even term lies out-
gside one of the intervals [X£,+w) or (-w,Xi] in which case
N-R iterates to X3 or X, respectively. The same argu-—
ment applied if we start with a value of x 1lying within
the interval [xi,xA]. Finally starting with a point within
[Xi.+m) iterates to x3, and with a point within (-w,Xi]

iterates to X We have of course excluded points which

iterate to Xil or Xé, but as shown in the discussion of
Hypothesis 2 these points form a set of measure zero. Also
XA and X, are isolated points i.e. no other peints in the
X-axis iterate to them.

This completes the proof. When either two of the roots
of the cubic are equal or when all three are equal, it is easy

to show that the theorem still holds.

To illustrate the relevance of the condition that the roots
be real, consider a cubic equation with only one real root,

namely
£(x) = x¥ - 2x + 2 = 0.

21,
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It can easily be shown that X, = 03 Xp 1.0 con~

stitutes a 2-cycle for this cubic.
Also f"(xA) = £"(0) = 0.
Therefore

f(xA)f"(xA)f(xB)f"(xB)
fl(xA)z fl(xB)z =0 < 1.

Thus this 2-cycle consists of points which are points of
attraction with respect to direct N-R iteration. Small
intervals about X, and Xg exist for which the N-R
sequence converges to this 2-cycle. To illustrate this

consider the following N-R iteration sequence:

X 0" 0.01; X, = 1.00015; Xy = 0.00000081;

X, = 1.0000012 ete.

Clearly this N-R sequence is converging to the pair

xA = 0; xB = 1.0. There is thus a set of non-zero measure

for which N-R does not converge to the real xoot of

x® - 2z + 2 = 0.

However a further fact of interest is that sometimes the
points of non-convergence of Newton-Raphson form a set of zero
measure even when all the roots of the algebraic equation are
not real. For example, with the binomial equation

2 £ 5 :
x® - a = O(n > 1;a > 0) this is true, despite the fact

that the equation has (2n-2) complex roots.

The conditions under which the points of non-convergence of

N-R form a set of zero measure clearly require further in-

vestigation.

The non-local convergence of, for example the other Schroder

iterations and also of the Laguerre iteration will also merit

some attention.

FIGURE .
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Introduction
———e e e e O

The simulation of dynamic systems plays an important part in

engineering and technological studies. This requires the

solution of sets of ordinary differential equations of the form
;i = £.(3,t) i =1,2,...,N (1)

In this paper it is assumed that the functions !‘ are smooth
and well-behaved such that Bfilaxj exiats for all { and j.

These sets of equations can be solved using
) An aAnalog Computer

(ii) A Digital Computer
)

A Digital Differential Analyser,

The analog computer is theoretically the most ll!lllletory device

because of speed, however, limited accuracy and inflexibility make

the digital computer a much more attractive proposition, The
digital computer suffers from the major disadvantage of its slow
speed. Even very fast machines such as the 0DO7600 could take
several hours for the simulation of & process which could, in
theory, be solved in minutes on the analog computar, It {a the
purpose of this paper to show that modern numerical methods aliow
the digital to approach the speed of the analog computer. The

digital differential analyzers are hardware integrating devices that

may in the future prove to be a replacement for software.

Stiff differential equations

As we assumed that the functions would be smooth wall=behaved
functions, we can illustrate stiffness by local limaavimation of

our differential equations.

v o= Eyaty
. az(zvt) AZ
(52

Fy(to),tq)

s AF(y,8) Ly
ot

30.

The

9F
Let A = 3? and the eigenvalues of A will determine the

characteristics of the solution.

solution will be given by an approximation te the eXponential
matrix, exp{(Ah)
: n
exp(Ah) % I (Ah) /n'
. 1m0 S

where k is the order of the method used for integrating the

differential equations.

Accuracy (1) is given by e > [l(Ah)l]k+1/k! where € is
some small number and []Ahll < k.

: i
Stability is given by [] = (an)“/7it]|<g

i=0

where £ is 2 for a first order method and slowly increases for

higher order methods (1).

A very simple problem posed by Rosenbrock and Storey (2) very

clearly indicates the numerical difficulties

§l] - - 1000 o}(y
y 0.999 -1 |y,
v (0) = (1.000, 0,999)

The solution is given by

y1(t) = exp(-1000t)

yz(t) = e.-t - (exp(-lOOOt)]/lOOO

After t = 0.002 the second term of y, makes a negligible contri-

bution to the solution.

The accuracy criterion camn be re-written }lthlk+1/k! and for

the above problem
A= =1, Let k = 1, then h%? < ¢ < 10 °
(h = 0,03)

for 0.1 7 accuracy

31.




but the stability requires that 1000h < 2 and h < 0,002 i,¢,

15 times smaller than the accuracy requirements warrant.

Conventional Numerical methods

The usual explicit methods are the Euler method which as a
first-order method is extremely simple to program, the Runge-

Kutta which may be summarized as

..l.(.l = hf.(xn..]_' tn-'l)
= PEGpag * Ky oy ¢ B/2)
Es = ROy g * kyypety g ¢ B/2)

k, = WR(y _ +k

1 + h)

n-1
In = Lpep * Uk 42, v 2k o+ K )/6

and the Kutta Mersom (3)

k, = hi(ln—l'tn—l)

Ko = RE(Z,_q * Ky g0 £, ) + B/3)

Es = PR Ryt Ky gty g ¢ 1Y)
Ko7 REGr, g kygp % 3ky et )+ 0/2)

L hF(Zn-I + 51/2 - 353/2 + 2£4,:n_1 + h)
Zn = Fpop * (K o+ obk 4 k6

e = (Z_l_c_1 + 9£3 + 8k4 - ks)/30

This latter method is particularly interesting because it allows
for a caleulation of the error, hence automatic step control is
possibile,

It shonld be noted that for the linear system

I = Ay

32.

_ A%h2 A*h®  A'n® 51 ASh®
Iq [I M S 1 e (3 A Yo
545
and e = [ﬁ“h_] ¢
n 51

so that as well as an error estimate the method should be
slightly better than a fourth order method. These latter two
methods are particularly useful if it is necessary to write

your own integration routine.

A number of unusual methods have been generated in attempts to
deal with the stiff problem, for example in the linear case it

is possible to formulate the equations as

N
g 2 agvi v Loy,
' j=1 *i57j
j#i

and then a numerical approximation can be arrived at using
the concepts of a discrete time Markov process (4). Attempts
to use this method for the general problem were not successful,

A fairly successful procedure was produced by Treanor (5) based
on the assumption that the solution will be of an exponential

form.

y = f(y,t) . - P(y—yn_l) + A 4+ B(§_tn—1)
_ 2

+ lc(t to-1)

2
Y,-q * (AP + BWF  + Ch'F )

¢
"

1
_ F o = /(n-1)!
Po - e Ph; Fn - n-1

(- Ph)

This method may well be significantly better than the Runge-

Kutta or the Kutta-Merson.

Implicit methods are far more popular today, largely because

they allow for a reasonable error prediction and they will

allow for a somewhat larger increment of the

variable.

The simplest predictor corrector

independent

has the form

33,




Predictor Yol ™ Ui F hz(zn—l’tn-l)
Corrector Iy, (m*l)= y .+ hF{(l—e)Xn_l + By (m,e  + hiy
If 8 = § we have the Crank-Nicolsen procedure, for 6 > } the

method should be completely stable.

The procedure is, for the linear case, equivalent to the

following expansion

exp (Ah) = exp((l-B)Ah]exp{-(—Ahe)j

+ (1 + (1-e)an} (1 - ean)™!

Distefano (6) has tested a large number of numerical methods and
shown that the explicit and implicit methods give much the same

results, (A slight discrepancy between the theoretical and
calculated stability limits is due to the use of an incorrect
physical model.)

Gear's method

A good method for the numerical solution of ordinary differential

equations should have the following properties

(i) Ability to handle stiff problems
(ii) Automatic error estimation and control
(i1ii) Ability to change step length easily and to print out

at convenient values of t.

(iv) Easy to use,

Gear (7,8) developed a routine which satisfies most of the require-
ments and it is worth looking at the essential features of his

method. The ordinary and stiff methods are formulated as given
below,

Predictor Tauitsy = Bop® gihy_n_1 + L. * Bkhin—k

* *
Corrector y sfm+l) = + BohE(y (m),t )} + B hy .+ ...
=n zn-l 0 —\'n n 177 n=-1

* .
MR AR
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A k+1  (k+1).
¥y

and the truncation error is given by h

Cr+t

The formulation for stiff methods is similar

Predictor Yo, (o) = %1Zp-1 oo by ot nlhln_l

*

*
Corrector zd,(m+1)= u12ﬂ—1 e vogy

+ n*hF{y y € )
- n;(m) n,

: k+1 (k+1
The truncation error is h y( )(tn)/(k+1)
In order to obtain a formulation of the predictor corrector

equations suitable for changing the step length it is convenient

to represent the equations in matrix form,

The procedure is as follows for the Adams Moulton predictor-
corrector. Subtract the corrector equation from the predictor

equation and define

O
L}

(B - B))/B*  wicth B} = O

then
Yo () " Tacoy * BNMEG oyt = hy 4]

where ) A . . '8 "
hyn,(o) = a-1 e k “n-k
and if A
' . t n>1
Mo, 7 MO (1)t =

Then the corrector equation canm be written as

Ya,(mel) = Yo, (@ * BEEGL yat) - hi )

The predictor can now be written in the following matrix form

( ) ( a s 8.} (v

Yo, (o) | 1 8 B Br-1 k n-1
y 6 o w < & [ hy _

hyn’(o) 0 61 2 k-1 k n-1

by, = o 1 o . . . o 0 hy
= oA . 1 ) hy

Y p-ks1 e 0 n-k
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or defining the vectors !nxm) aﬁd !n-l and the matrix as B
v = B V
—nfo) —n-1
and the corrector equation combined with the equation

Ma, (me1) T hf[yn.(m),tn]

= hyn.m + [hf(yn,(m),tn) - hin,(m)]

can be written in terms of the vector V as

Yortme) = Ya,(m) *'S”[ln,(m)]

where [4 = [B

F[zﬂ9(m)J z hf{yn;(m>:tn} - hﬁna(m)

After m iterations set V v
-n n, (m)

For stiff methods we get much the same formulation by using

the above procedure and now the predictor takes the form

yﬂ,(o) . nl az aa oo Ol % Yn-1
hy y 8 y
n, (0) 1 1 Yz Ya ot Y1 Y hyn~1
¥ 1 0 0 0 ...o0 0 S
i
Yn-2 0 0o 1 0 ¢ .« 0 0 Yn-3
| — 00 0 0 ....1 0 Yoy
The corrector takes the same form with
c . [n*. 1, 0, « . . » O}T

But the predictor formulae are equivalent to fitting a kth
4

degree polynomial through the known information carried in

36.

v And, instead of saving information in this form, we will

—n-1"
make a linear transformation 0 such that

a1 T Wa-1

The transformatiog Q is chosen so that k+1 compoments of 2 _,
are the function value Yn-1 and the first k derivatives of the
polynomials used in the prediction process. If the pth deriva-
tive in gn-l is scaled by hP/p!, the matrix Q will be

independent of h,
So

T
. . K, (K)/,,
Z [yn,hyﬂ, ¥ % w5 N Ya k.)

where yn(p) is the pth derivative of the approximating poly-

nomial.

=J
Zo,(0) " Un, (o)™ B Iy

2F (0

Zo w1y T Wa,(me1) T Zn(m) + Zo,(m))

where % = Qc. Since both én and !ﬂ have yn and hy as their

first two components and F depends on these only

-1
F(Q 'z)) = F(Z)
% depends on the predictor corrector method used. The matrix

-1 ) . . .
QBQ provides a kth order approximation to Z in terms of
d119(0)

Z

Zo-13 hence it is the Pascal triangle matrix for either method.

One difficulty remains in that the corrector only converges for

small values of h and stiff methods require the use of large values

of h.
In view of the equation
+ EF(gﬂ)

Zn,(me1) T Eﬂ,(m)

convergence is equivalent to solving the equation F(En) = 0 and
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Newtons method may be applied. The successive approximations
may be written as

}

=1
Zn, (msl) T I,y * 2(-(3F/02) 1) F(Zy, (m)

where (-0F/3z-2) '- (2,- ne 3g/3y)7"

The error is controlled using a single parameter, €, and the
decision whether this is a relative or an absolute error control
depends on the solution. If it is growing, a relative contrel is

used; if it is decaying, an absolute control is used.

Gear’s (8) program satisfies the first three criteria given above.
It is not particularly easy to use, but there is no doubt that the
program (8) is superior to any other available today.

A few minor alterations have been made to the program listed in
(8). Considerable difficulty was found in the use of the array

SAVE and this was converted to 2 one dimensional array.,

The numerical differentiation was altered so that if the numbers
are nearly the same the difference would be set to zero. This
latter modification is particularly important if the original

problem is unscaled.

Finally a completely revised version of the program has also been
written incorporating a sparse matrix inversion routine so that
up to 500 differential equations can be handled in a total of 80
core. (13)

Problems tackled using Gear's method.

(1) Parameter Estimation.

A simple problem presented by Chandler et al (9) involves the
simulation of the reactions catalysed by bovine liver glutamate
dehydrogenase, The object was to find values of the rate constants
from experimental data using regression procedures. To make this
approach viable, extremely fast solution of the set of differential
equations was required. The reaction scheme is of the following

form.

38.

and that three material balances must be satisfied.

EP

It is easy to show that there are four independent reactions

We define

A
(Er) £y,; () Sy (EA) = yi: (EAB) = y,, then

1= (ke kydy, + kyy,

Y2 = k,y,

¥y = ky(EX(AY - kyy; - kay,(B) + k,y,
Vo= kyy (B) - (k+ k )y, + koy,

(A) = (Ao) =Yy T Y2 T Y3 T Y,
(BY = (By) =¥, = ¥, = ¥y
(B} = (Eg) -y, =~ ¥3 — ¥4

The properties of the problem can easily be seen from the

Jacobian matrix

~ (kg + k;) O 0 kg
x, o 0
B¢ - ky(A) 0 - {k;(A) + k, + ky3(B)} (k,- k,(&))
o ¥ 0 k3 (B) - (k, + kg)

In addition it turms out that (A) and (B) do not vary greatly and
that using the values of the constants given by Chandler et al

(9) the eigenvalues were found,using the Francis QR - algorithm.

-9
A = (=5.12 x 105, -8.8 x 105, =2.38 x 102, -6.43 x 10 ')

As the solution must be found at a time equalling 0;1965t3?. 105
stiffness canbeassessedasapproximately 0.196/(8.8 107) =
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The effectiveness of Gear's routine can be seen from Table T

below.

TABLE I

Runge-Kutta Treanpr Gear

No. of derivative
evaluations on the 167681 6721 402
interval t = 0,0.196

(2) Simulation of a flame reactor

Williams (10) proposed a partial kinetic scheme by means of which
the partial combustion of methane or ethane may be modelled,
Using Gear's method it becomes possible to judge the usefulness
of the kinetic data given for the 35 reactions. Here the sheer
weight of formulating the problem has to be considered and the
data must be organised. We note that for a set of chemical
reactions we have a number of molecular species which consist of
a number of atomic species. These facts can be used to find a

consistent set of compositions and the corresponding set of

differential equations.

The procedure as outlined by Aris (11) is given below. Let A
be a matrix of stoichiometric coefficients where a.. refers to
the ith reaction and the jth chemical species. For each reaction

we can define an extent Xi and then the change in the number of

moles is given by

AN, = X, a
] i

L=
™
.

ot - xTa

and now the number of independent rows of the matrix A is found,

by a linear transformation Q.

QA =

2 =
=
ah
N

-
e
' 1

40.

Let XTO_1 = 2 and the number of moles of the independent

components represented by the vector ANI with the dependent

components by AND

(.A_N'i' ﬂi} = [ZI’ ZIcl2]
T T
élq--I.) = AEI c12

So that we need only work with the independent subset of

chemical species,ANI. Except for the case of equilibrium, we
cannot work with an independent subset of reactions. The state-
ment by Aris that ome can work with an independent subset of

reactions is in faet incorrect.

The reaction rate set that we work with is given by

=T *T T -1 T -1
= £ = r Q
N o= Z; = X Q £ Q
The form of the detailed data given by Williams is shown in

Table II.

TABLE 1T
No. Reaction log“keo s mgl—l
1 CH, + CH,. + H. 15 436.8
2 C,H, + 2CH,4. 16.51 369.6
3 2CH,. + C,H, 11.12 0.0
4 CH,.+ 0, CH,0 + OH.| 11.3 0.0
35 CH,.+ 0.+ CH,0 +H.| 14.11 8.4

Experimental evidence indicates that sldehydes (e.g. CH,0 in the
above) promote the combustion reaction. Sufficient data exists
in this paper to enable a comparison between experiment and theory

to be made. At 600K the reaction rate constants are

011.12’ 11.3 12.5)

p Lol 10 , 10

-23
(kys Kys Ky kys kyg) = (10 °7, 1 1
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is i ; ! i in ref.(8
and from this it can be seen that the problem is a particularly Program 1 Gear's program as given (8)
i i iti : : i ifi Gear's program using sparse matrix
stiff one. At time of writing no numerical results are available Program 2 Modified Ge PXOE g sp
inversion routine of Curtis & Reid (14)

; ifi g i Senior' 15
(3) Simulation of large systems. ] Program 3 Modified Gear's program using Senior's (15)

sparse matrix inversion routine.

By large we are talking of systems with several hundred

differential equations. -Sgetens thdc icows.ipty EHLE -cAtegory Table III shows the storage requirements and relative speeds of

are power station simulation, global economic and technological different computer programs. Only the stiff method of Gear's

v ) F § I

BANUERELORS, (0loVa) RUSH B MEECHTDE; M5 e 05k SLIWHE 0 program was used because the Adam's Moulton predictor corrector

Growth” and here we shall look at the simulation of distillation
would be far too slow.

columns. The form of the equations are discussed by Holland
(3. (4) Simulation of closed circuit grinding
The equations take the form " In this case the objective was to look at the grinding
operation in an attempt to check modifications in process design
x, . = - (L, +P)x, . ~V,y, . + L, _x, .+ d look at different control strategies. In particular the
i (- @y $7%5,1 75,8 7 M5-1%5-1,1 and look & =

model would be useful in the development of a multivariable

N . . * S AP R N
* vJ+1 yJ+1,1 F]z],l} / WJ control system.

J is the number of stages and i is the number of components. The crushing process can be approximated by thinking of the mill
"be, geletionghip bekween the wapoor (yj,i) a3 et gl (xj,i) as J consecutive stages in the direction of flow and N particle
mole fractions is given by

size classes in each stage of the mill. The dynamic equations
. I for the solids flowing through the mill are
Yii < % xj,i/'(kf1 o xj,k)
y . = F, ~-F + Break, - Break
The modified version of Gear's program incorporating a sparse 3 in ont s out
matrix inversion routine has been used here. By changing the v
number of components and the number of stages it is possible to Fin - Gj-l n,j-1
alter the size of the problem.
TABLE III -
No.. of Program 1 Program 2 Program 3
0,D.E.'s Storage Time¥* Storage Time Storage Time
25 11k** | 1 18K 1.4 12K 1.1
150 59K 34 36K 15 25K 12
300 - = 80K 71 52K 47
500 - - - = 82k | 105"

|* time is relative to the smallest
**storage given as 1000's of 24 bit words

+ actual computational time on a CDC 7600 was 40 seconds




The outflow from the final stage is mechanically controlled and
assuming that the hold~up exceeds some quantity, WMIN
0 = FT W =

) n,d ~ Yuin * WV,

-2 2
7 a (2 X 107 - 2q)

J
N
) 2
A Ye, 3
Break = § W
out

G

Break,
in

Bn,k 18 the breakage matrix and must satisfy the condition that

n=k-1

ngl Bn,k =1

(4.89 - 4x§ )
= N_
5n o.OSA(nn_lllso.) b

The equations for the water flowing through the mill are
W [T -
Vi W

4 : = G, -
N+1,j F1 I W ..+ w ey
n,g-1 * Wi T IO

Some of the material is recycled and before returning to the mill
it is classied in a cyclone so that only the large particles are

returned to the mill. The equations describing the behaviour of

the cyclone are given by Lynch (16).

With 5 stages and 5 particle size classes only 30 differential
equations arise but using Gear's program in the original version
resulted in an increase of speed of 20 to 25 times, so that 1 hr
of mill simulation tooklapproximately {1 an hour on a CDC 1700.

The detailed description of the simulation is given in (17).

Conclusions

B : 2
Gear's program has been run satisfactorily on some five

different makes of computer and when used properly always given a

considerable inerease in speed for simulations in which we approach

some sort of equilibrium or steady-state. A wide range of

problems have been discussed in this paper. For the smaller

problems single precision word—length of six figures has been

found adequate, For the larger problems such as the distillation

44,

case a longer word length is required as referred to by Gear (8).
There is no doubt that this routine enables the user to approach
the speed of an analog computer with a considerable improvement

in accuracy.
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AUTOMATIC STEP-SIZE CONTROL IN PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS

D.P. Laurie

National Research Institute for Mathematical Sciences,
CSIR, P.0. Box 395, Pretoria, 0001

ABSTRACT

When using a suitable implicit method to solve a parabolic equation,
the step-size need not be restricted to satisfy stability require=
ments. As the faster components die out, the step-size can bé
increased without loss of accuracy. Using arguments from approxi=
mation theory, formulas are derived for finding suitable step-sizes
to be used with various time-stepping methods. The global error

is shown to be related to the stiffness ratio of the semi-discrete

form of the parabolic equation. Numerical results are given.

This work forms part of research towards a Ph.D. degree at the
University of Dundee under the direction of Prof. A.R. Mitchell.

47,




1.

48.

INTRODUCTION

The question of automatic step~size control when solving a para=
bolic partial differential equation (PDE), arises only when
implicit methods are used, since ;he inherent stabilit& restric=
tion on the step-size for an explicit method is usually also severe
enough to guarantee accuracy that is commensurable with the spatial
discretization error.

The problem can be thought of as related to adaptive quadrature
and to the automatic solution of ordinary differential equations
(ODEs) . In the case of the former, we can learn a lesson from
Rice [ 1975]), who cautions against a proliferation of heuristic
techniques and advocates a "metalgorithm", in which the problem is
broken up into several independent sections, each of which can be
analysed separately.

With this end in view, we separate the solution of the PDE
into two phases»by semi-discretization, following Varga [1962].

The applicatian of one's favourite technique for elliptic equa=
tions to the space variables {e.g. finite differeﬁces, finite
elements, parametric models) leaves one with a system of ODEs,

typically of the following form

() BU' + AU = F, U@) =y ;
(o]

where B and A are n by n matrices, and U and F are vector-valued
functions of the time variabie t. Most of the classical diffe=

rence formulas given by Richtmyer and Morton [ 1967] can be obtained

from (1) by applying a simple ODE formula such as the forward or
backward Euler method or the trapezoidal rule.

One may ask why (1) cannot be solved by an automatic ODE
solver such as that of Gear [ 1971}. If the problem is small
enough and the computer large enough, such packages can in fact
be used; see e.g. Murphy [ 1975]. When, however, the matrix B
is large, sparse, and not diagonal (as occurs in finite element
discretizations), the explicit inversion of B to bring (1) into
canonicai form should be avoided.

The a posteriori technique of error control that is used in
many ODE routines could still be applied with any method that does
not explicitly invert B, This technique consists of performing
the calculation twice at each point of time, using first a single
step of size Ot and then two steps of size iAt. With the aid of
asymptotic error analysis, one can now decide whether the error is
too large, acceptable or too small, and the step-size can then be
decreased, kept constant or increased, according to some (usually
heuristic) strategy. This technique obviously has an overhead of
at least 50%Z, but this is still less than the work required to
obtained a priori error estimates in the gemeral ODE case.

In the case of the system (1), however, we know that the exact

solution is

€
2) U(t) = exp(~tB 'A)[uo + [ exp(”ta) " F(D)a1) .

o
When the order n of the matrices B and A is small, this formula
can indeed also be used for computing U, by using the identity
(applicable to diagonalizable matrices)
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(3) exp(M) = Q_]diag(exp Ki)Q

where li are the eigenvalues of M 'and Q is a non-singular matrix
such that M = Q-ldiag(ki)Q. In the parabelic case, we usually
know that the eigenvalues of BﬁlA are simple and positive: upon

suitable ordering we may write
) 0<)\1<7\.2<...<>\n.

It is clear that we have quite detailed information about the
solution, and it becomes plausible to look at a priori error
estimates.

The problem has now been essentially reduced to a problem in
approximation theory, since we shall show in the next section that
the approximation of a matrix expoﬁential by a rational function
is equivalent to the simultaneous approximation of the exponential
function at each of the éigenvalues of the matrix, If we approxi=
mate the matrix exponential to a given absolute accuracy €, we
have in a sense approximated the solution to a relative accuracy
€, since the matrix exponmential is multiplied by the given vectors
UD and F. The aim of the error analysis is to find an estimate
fop the error E as a function of the time siep At. Por the auto=
matic step-size control strategy, this relation is then inverted

to yield At as a function of the desired accuracy €.

THE APPROXIMATION PROBLEM

We consider a rational approximation r(t) = p(t)/q{t) to exp(-t),

and define

(5) v = {0001 'p0w)

where M is as before, Clearly
00 = {qfq'diag()0}) 7 pla diag®r )0}

(o ataglar 1) 7! @ Maiagleer )0

Q 'diag{r(\ )}

We thus obtain
THEOREM 1

exp(-M) - r(M) = Q—]diag(exp(—ki) - r(li))Q.

Using the fact that HQ_IH I} = 1, we obtain

COROLLARY
lexp(-M) - r(M)l < min|exp(~Ki) - r(li)f
i
< min|exp(-A) - r)| .
AE
(A ]

An interesting choice of r was made by Cody, Meinardus and
Varga [ 1969] . They minimize the maximum error over the entire
half-axis, which makes it unnecessary to estimate Rl and kn' The
only drawback of their approach is that accuracy can only be
increased by increasing the degree of r; the approximation cannot
be used for time-stepping.

For a time-stepping method we need an approximation that will

yield stable solutionms. Such an approximation is called
acceptable by Lambert { 1973]. There are many different levels of
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acceptability, but for our purpose the following will suffice:
Definition

A rational approximation r(t) to exp(-t) is called acceptable if it

satisfies the following three criteria:

(7a) |exp(~t) - r(t)| <1, t €[0,0);

(7b) r(e)f <1 . t € [0,);

(7¢) for all €>0 there exists h > 0 such that
|exp(-t) - x(£)| < e, t €[0,h).

In order to examine the use of a time-stepping approximation,

we proceed as follows:

(8) exp(-(t+At)M) = exp(-tM) exp{-AtM)
= llexp(-(t+At)M) - -exp(-tM)r(AtM)Il
< lexp(-tM)I! | exp{-AtM) ~ r(AtM)I

9) < max exp(-tA -A -
NEER A SIS0 S B

To make the righthand side of (9) less than e, we put

£n (é)

>
"

)

mxn(kn,

(Q11)]

ind
]
>

This requires an estimate of the largest eigenvalue kn’ which is
usually easy to obtain by Gerschgorin's theorem or numerically

by the power method.

We now have the following: given € > 0 and any acceptable
rational approximation r(t), and knowing exp(-tM), we can find
At > O such that exp(-(t+At)M) can be approximated to an accuracy
of €. The reader will have noted that the requirement of con=
sistency has not yet been mentioned. Sinmce lack of consistency
is essentially a non-local phenomenon, which does not show up in

a single time step, we postpone discussion of it to the next sec=

tion.

GLOBAL ERROR

Let e be the computed approximation to exp(-tkM). Then
Hexp(—(tk+Atk)M) - e r(AtkM)"
< ﬂexp(—(tk+Atk)M - exp(-tkM)r(AtkM)H

+ Hexp(-tkM) - edl Hr(AtkM)H

By (7b), Hr(AtkH)u < 1. Since the first term is less than €,

it follows by induction that

] exp(-tkM) - ek“ <k eE.

In the strategy (10) we take X = Rn until t » X . The total

number of steps taken is
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1

)

(11) = €
ko h ‘

Thereafter, the time-step taken is

Hence

leading to

(12) 6 = [l & -LJ ° .

i.e.
nid
€
Comparison with (12) yields
(13) Kk = = 0aly)
(4] 1
ln(l +k—)
o
1
since ﬂn(z)
tko kn ’

If kD in (i1) or X in (i13) does not evaluate to an integer, we

take, of course, the mext highest integer.

In order to add (11) to (13), we use the approximation
(reasonable for large ko)
1, . 1
f.n(l +'k—)—'k—-
o o
arriving at the estimate for the total number of steps

K= ko{l + Kn(Rnlkl)}

We thus have a quantitative expression for the qualitative fact
that more steps are needed when the stiffness ration Anlkl of the

problem is large.

Example

Most of the ordinmary approximations have local error estimates of
the form chp+l, where p is an integer. Thus the global error in

such an approximation is estimated by
(14) ke = {1 +£n(nnnl)} gn(%)chp_

This reflects the well-known fact that a given method globally loses
one order of accuracy, and also shows that for the error to go to
zero with h, p must be at least 1. This is where the consistency
requirement shows up.

The presence of the factor £n(é) seems to conflict with the
known fact that the global error in a p~th order method is 0(nP).
However, we are calculating not up to a constant tK’ but up to the
point where exp(~tKA1) < g, so that tye becomes larger as € becomes

smaller. This is essentially the reason why this factor occurs.
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CONCRETE REALIZATION AND NUMERICAL EXAMPLES

The preceding discussion applies to any acceptable approximation
r(t). The choice of r(t) is however severely limited in practice,
since the formation of higher powers of A and B gradually fills up
the matrix appearing in the linear system. We therefore confine

ourselves to the consistent (1,1) approximation, acceptable when

j<ox1,

- 3 3
For 8=} we have the estimate [e t--r(t)f < %f for t €[0,4),

leading to

e (1273,

This choice of 6 gives rise to a non-negative strictly monotonically
increasing error, of the same sign throughout { 0,h), and greatest

at h. Loosely, accuracy is "wasted" since the approximation is
equally good over [ ~h,0] where no eigenvalues can occur. We see
from Fig. | how 0 can be chosen to be_optimal for a given ¢ in the
sense of giving the longest interval in which (7b) holds. The
numerical examples have been calculated both for 8=§ and for this
optimal value of 6.

The test problem used was the following:

L L F

: Lxs u(0,8) = u(l,t) =0

u(x,0) = § - [x-}].

The space discretization used was the fourth-order difference

formula

: - vy =Lw -2 su ).
Un * 72051 = g+ Unyy) hz(um—l o T U

An indication of the accuracy of this formula can be gained by
comparing the eigenvalues of the semi-discrete form above with
those of the continuous version. (See Table 1).

The error norm used was

_ lu=uy
error o *

where U is the computed solution and || II| is the ordinary vector
norm. In Tables 2 and 3 we give the tﬁtal error as well as the
number of steps taken for two choices of 0, namely 8 = } and

9 = 0,51674. ‘ The latter is optimal for € = 0,0001, as we have

shown elsewhere [ Laurie (1975)].

Semi-discrete Continuous
- 9,8692 - 9,8696
- 39,461 - 39,478
- 88,621 - 88,826
-156,74 ~-157,91
-242,18 —246,74

Table 1: Comparison of the five smallest eigenvalues

of the semi~discrete form for h = 1/11 with

those of the continuous version.
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¢ Number of Relative
steps g error
0,01 46 ~ 0,00007
0,02 92 0,00014
0,05 172 0,00024
0,10 233 0,00035
0,20 294 0,00046
0,50 374 0,00097
Table 2: Numerical results for test problem with 6 = }.
¢ Number of Relative
steps error
0,01 22 0,00003
0,02 44 0,00004
0,05 82 0,00005
0,10 11 0,00005
0,20 140 0,00047
0,50 178 0,00271
Table 3: Numerical results for test problem with

8 = 0,51674 (optimal for ¢ = 0,0001)

CONCLUDING COMMENTS

We have derived a step—size control strategy applicable to any
space discretization coupled with any rational approximation in

time. The estimate (14) for the global error contains one factor

P opnck
ch ﬁn(e)

related to the characteristics of the rational approximation, and

one factor

1+ o M)

rélated to the stiffness of the space discretization.

In the numerical results quoted, the error per step has
been much smaller than predicted. We attribute this phenomenon
to the fact that the initial values contain a dominant component
of the eigenfunction corresponding to Rl’ and it %s intended to
take into account the initial values in future refinements of

the present technique.
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Introduction

In [13] it has been shown that in the case of the numerical solution of
a second-order parabolic partial differential equation improved explicit
difference approximations can be constructed by use of a smoothing tech-
nique. In this paper the aim is to investigate the possibility of
extending this method to the numerical solution of a higher-order para-
bolic partial differential equation which can be written as a system of

simultaneous equations.

An example of such an equation, one for which a large number of different
difference analogs have been proposed, is the fourth-order equation

(1.1 U O T 0, 0<cxg 1, £t >0

It will be assumed that initial values

(xso) = go(x)

(1.2)
v (2,0) = 8,

for 0 € x £ 1, and boundary values

u(0,t) = fo(t)
u(l,t) f!(t)
4, (0,8) = p(£)
uxx(l’t) = Pl(t)

for t > 0, are given.

1l

(1.3)

The transformation

.6 *7 Y%
V=
transforms (1.1) into the system of simultaneous equations
¢ =¥
(1.5) wt ~ ¢xx
t o Txx

0<xg 1, t>0 which can be written as

(1.6) wt = A
with

-|¢ I |
Galhi [w]’A [1 0]

XX

Difference approximations of the initial boundary value problem.

In order to construct finite difference approximations to (1.6) a
rectangular difference grid with mesh widths Ax and At in the x and t
directions respectively will be used, with Ax, At > 0. The co~-
ordinates of the grid points are given by (jAx, kAt), and j and k non-
negative integers and MAx = 1,

Furthermore, with x = jAx, t = kit,

$(x,t) = 0(jox, ki) = &, o
w(xst) = \Pj,k’
wix,t) = ﬂj ke

The mesh ratio is given by r = (15

(&x)

2

A large number of difference approximations of the initial boundary value
problem given in §1 have been published. These either take the form of
direct analogs of (1.1), see e.g. [1, 2, 3, 4, 5, 6, 7, 15], or
approximations of (1.6).

In the latter case approximations of the scalar equation

2.1 Vi = Vo

are adapted to approximate (1.6). Examples of such methods were
published by:

(a) Evans |l .

In this the Du Fort-Frankel difference amnalog LIO] of (2.1) is used to
approximate (1.6), the resulting approximation can be written as:

(2.2) nj,k”-szj’k_l = AR, o+ Qj”’k-{z

RIS P
The truncation error is similar to that of the Du Fort-Frankel equation,
viz.

2.3 E=o(an?+ @'+ EHY,

This approximation is explicit amd stable for all r > 0, but starting

values on two consecutive time layers are required.

(b) Fairweather and Gourlay {lZl.
Lees' method [14] for (2.1) applied to (1.6) gives:
28) 85 = % TAR ) et By e~ %5,

In this case the truncation error is
(2.5 E=o@t+ a0’ + 55,

the equation is also explicit and stable for all r > 0.
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{c) Richtmzer 16] .

The Crank-Nicolson method [8] for (2.1) applied to (1.6) gives:

2.6 L a2y q. & I 82
(2.6) (T +ZA8) Q= Trgapa

Gi being tﬁe central difference operator in the x direction. The
truncation erreor is

2.77  E=oan)? + ).

(2.6) is implicit and stable for all r > O.

(d) Fairweather and Gourlay [12].

The high order correct difference method of Douglas [9] applied to

(1.6) gives:
(10T + 12rA) Q.
(2.8) J
= (10I-12rA) Q.
¢ Ea) ik

+ (1-614) [0,

Skt ekt o)

+ (I+6rA)[ﬂj_l,k + Qj+l,k]‘

The truncation error is
(2.9)  E = o(at)? + (axhy,
the approximation is implicit and stable for all r > O.

A smoothing method.

In [131 a number of explicit difference methods employing a smoothing

technique were developed. The simplest of these, when adapted to
approximate (1.6), gives the difference analog:

2

3.1 Q Q.. +A I b Q

isk+) ik p=-2 P i+p,k

or
2

6, =¢. .~ I b_¥

J,k+1 k j k
@2 b p=-2 P

v =Y,

Jrk+l WJ,k . pE-Z bp q’j*‘p,k 2

Under the assumption that
(3.3) b-i = bi’ i=1,2
the consistency conditions are given by
b, + 2b + 2b, =0
(3.4) 0 1 2

bl + 4b2 -r,
The truncation error is

(3.5) E = o(At + (Ax)?).

1f, in addition to (3.4), the relation

. -
(3.6) b2 3 (6r-1})
holds, the truncation error is
(3.7 E= o)’ + o).
Using the results from [13] it can easily be shown that the approximation

(3.1) is stable for all 0 < r & 2 if b2 is chosen such that if

2r=| T
0 <r < 1 then 5 € b2 £ =,
(3.8) else if
2
r r
1 £r<£ 2 then 3 € b2 £ -

The choice (3.6) for b2 satisfying (3.8) is possible for all 0 < r € 2/3.

The difference approximation (3.1) is not defined for all points of the
difference grid used. It can however, see [13] , be written as a
combination of a basic difference equation and a smoothing formula, both
of which are defined for all grid points.

An obvious choice for the basic difference equation is the explicit
approximation

(3.9) R (=9

which is stable for 0 < r € }.

As has been shown previously a number of smoothing formulas can

*rAGR 20y tB k)

normally be constructed in each case. One possibility is the
following:
8 e ™ 20,0 %, * 21,0 @op,k T Bl
(3.10)
*ag B e P20 Gager T Her,ae
In (3.10) the value Q° on the left-hand side is the smoothed value.

3.

If (3.9) is used to compute the values 2 on the right~hand side of
(3.10), then the combination of (3.9) and (3.10) is equivalent to the
computational procedure (3.1), if the following relations hold:
1
4,1°F P2

a
(3.11) 0,0 1,1

4,0 "

A0 = T

The computational procedure using (3.9) and (3.10) is the following:
Using the prescribed initial and boundary values, values are computed

for the first time layer by use of (3.9). These computed values,
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together with the known values on the previous time layer are then used

in (3.10) to compute smoothed values Q" for the first time layer.

Using these smoothed values and the prescribed boundary values, values
are then computed for the second time layer by use of (3.9). The
smoothing prdcedure is then applied to these computed and the previously
smoothed values to compute smoothed values 87 for the second time layer.
The whole process is repeated to compute smoothed values for subsequent

time layers.

Example.
Consider the differential equation (1.1) with initial conditions

u(x,0) = 33 @ - 22 -1,
ut(xso) =0, 0L x¢% 1

and boundary conditions
u(0,t) = u(l,t) = uxx(D,t) =- uxx(l,t) =0, t 0.

With the transformation (1.4) these conditions give

w(x,0) = [x?xz]

o(1,t) = [g].

In the following table results for this problem published in [li] are

w(0,t)

compared with results computed with the smoothing procedure described

in §3. The differences between the analytic and approximate solutions
are given for t = 0,02, computed with Ax = 0,05.
X = 0,05 0,20 0,35 0,50
Analytical soln.|-0,003 999 73 |-0,015 048 33 (-0,022 841 22 [ ~0,025 659 28
(2.2) with v = } 0,000 004 89 | 0,000 014 16 | 0,000 011 86 {-0,000 011 95
€2.4) with r = } {-0,000 016 75 |-0,000 061 93 |-0,000 060 64 |~0,000 013 35
(2.6) with r = } 0,000 117 45 0,000 367 12 0,000 388 87 0,000 335 31
(2.8) with r = § 0,000 000 07 | 0,000 000 29 | 0,000 000 28 ;-0,000 000 17
(S;lg,‘g;;h3;3‘3§’ 0,000 000 58 | 0,000 022 80 | 0,000 048 29 | 0,000 009 17
é3.l)0w§th r = % 0,000 035 85 | ~0,000 045 73| 0,000 008 12 |-0,000 039 45
2 - b
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NON-WELL POSED PROBLEMS IN ANALYSIS

* Fritz John
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New York

ABSTRACT

For a problem that is well~posed in the sense of Hadamard we are
presented with a space F of data f, a space U of solutions u, and a
continuous mapping T : F>U. In an ill-posed problem T either ceases
to be defined or to be continuous. For the class of problems discussed
here we assume that T is defined but not continuous on F. Continuity,
however, is essential for any numerical scheme that would permit to
obtain approximations to the solution u from approximate data £. 1In
many ill-posed problems continuity can be restored by restricting the
domain of T to a suitable subsget Fu of F. For that purpose we first
restrict the solutions u to a subset UH of the space U of admitted
solutions; (usually UH congists of those u € U which together with

a certain number of their derivatives have M as an upper bound for
their absolute values). Subsequently Fy is defined as the set of

f € F for which Tf € UM' The set Uu must be chosen in such a way
that the restriction of T to FH is continuous.

A realistic numerical scheme can only exist when the problem is
“well-behaved” in the sense that T is Héfder continww on By
Examples of well-behaved improperly posed problems discussed here
are the problem of analytic continuation of functions, the Cauchy
problem for the Laplace equation, the final value problem for the heat
equation, the numerical initial value problem for the wave equation in
3~space, and the problem of determining a function in the unit disk

from integrals over chords.
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(The lecture will be published in full in an appendix to the
Proceedings of a Symposium on Differential Equations- 2-4 April

1975, presented by the National Research Institute for Mathematical

Sciences.)

ON THE NUMERICAL SOLUTION OF SYSTEMS OF NON-LINEAR
DIFFERENTIAL DIFFERENCE EQUATIONS

J. D, Neethling
Department of Mathematics
University of Stellenbosch

ABSTRACT

Written in integral form the type of equation to be considered is

(1) 0 = Tu = F(u(t), u(t-ul), oiaincy u(t—un), t)

+ It G(u(s), u(s-ﬂl), ceas u(s-an),s) ds
o

with u, F, G ¢ Rm, u= ¢{t) e Rm, a given function, when B < t < O.
{al, Ggs ooy an} is a sequence of pogitive numbers and
8 = - max (al, Qgy ooy an). F and G possess continuous second deri=
vatives with respect to all vector components. An attempt to solve
(1) using Newton's method in Banach space usually fails owing to the
non-availability of the imverse Fréchet derivative of T, In this pa=
per Newton's method is modified by substituting the Fréchet derivative
by an operator which may be inverted to yield an explicitly applicable
iteration formula. It is then shown that the iterations found by
this formula do not differ from Newton iterations. The method is
applied to ecological examples and it is shown how difficulties arising

in the implementation may be avoided.

To appear in Zeitschrift fiir Angewandte Mathematik und Mechanik.
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A METHOD FOR DETERMINING THE EIGENVALUES AND EIGENVECTORS OF A
PERTURBED MATRIX

C. A. Botsaris

Department of Applied Mathematics
University of the Witwatersrand
Johannesburg

ABSTRACT

A wethod is presented for the determination, to a fiést order

approximation, of the eigenvalues and eigenvectors of a perturbed
matrix, from those of the unperturbed one. The method is based
on the dyadic expansion of a matrix and it allows the eigenvalues

of the unperturbed matrix to be of any multiplicity.
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Introduction

Let A be an n X n matrix, whose eigenvalues Ai and eigenvectors

ug, i=1,2,..., n, are known and let us form the matrix

C=A+ ¢B (1.1)

where B is a given n X n matrix and € is a perturbation parameter.
We want to know the effect of the perturbation on the eigenvalues and

eigenvectors of C, for small €.

Jacobi in his paper on the algebraic eigenvalue problem (C.G.J. Crelle's
Journal, 30 (1846) 51 - 95) treated the above perturbation problem for
symmetric matrices with distinct eigenvalues. Since then, various
authors have treated the same problem but, as Wilkinson [2] notes, no
rigorous method based on the classical perturbation theory and handling

the case of multiple eigenvalues, can be found in the literature.

However, Wilkinson, using the theory of algebraic functions, notes that,
if A is an eigenvalue of A of multiplicity m, then there will be a set
of m eigenvalues which, in general, will fall into groups which can be
expanded in terms of fractional power series of €. In his book
Wilkinson, using no more the classical perturbation theory but the
Gershgorin's Theorems, develops a method for the perturbation of the
eigenvalues and eigenvectors, which handles the case of multiple

eigenvalues.

Our method uses the classical perturbation theory and the dyadic
expansion of a matrix. In the case of an eigenvalue of multiplicity
man m X m matrix is determined, whose eigenvalue problem must be
solved, in order to evaluate the first order perturbed eigenvalues and

eigenvectors of (1.1).

We restrict ourselves to symmetric matrices and symmetric perturbations,

i.e., all matrices in (1.1) are taken as symmetric,

The dyadic expansgion of a matrix

Definition 2.1

Let x and y be two vectors in R®. The outer product of x and y is the
n X n matrix xyT. The specialized matrices formed by the outer product
of two vectors are called dyads.

Let us, i=1,2,...., n, be a complete set of orthonormal vectors in

R" and let A be an n X n matrix. The normalized dyads Eij are defined

as &
.1
E., = u.ui, )
ij i3
and they have the following two properties:
(i) Idempotency
P
= .2
E;., Eg o 2.2)
where P is a positive integer
Indeed,
2 T T T T
Eii = (uiui ) (ui“i ) (ui ui) u;u, (2.3)
and since
T, = 2.4
u s aij (2.4)
where Gij is the Kronecker delta, it follows that
E..2 = E., (2.5)
ii ii
and, by induction, any power of Eii is the same as Eii'
(ii) nilgotencz
&= i j 2,6
Eij Ei_} 0 ,i*%j (2.6)
Indeed,
T T T T
= 2. - T .u.,° = §.. E,, 2.
Eij Eij (uiuj )(uluJ ) (uJ ul) uluJ 631 Ex] 2.7)
and since i # j , it follows that
E,. E.. =0 (2.8)
ij "ij
Now since the set s, i=1, 2,...., n, is complete, it is
evident that the set Eij is complete and can therefore be used
as a8 basis for the algebra of n X n matrices. Therefore A can
be expanded in terms of these dyads as
A=F c.. E..
P | i (2.9)
i,j J J

where cij’ i, j=1, 2,...., n, are coefficients to be determined.
Premultiplication of (2.9) by umT and postmultiplication by u

yields

T T T

Aun -.Z. cij u, uiuj u (2.10)
1,)]

We see, the, that the terms on the right vanish unless i = m

and j = n, Therefore,
e =u Au 2.11)
n

T (2.12)

1,] 79.




80.

The method

Let A be an n X n symmetric matrix. Let the eigenvalues of A fall
into m isolated groups and let n; be the number of equal eigenvalues
within the ith group, i = 1, 2,..., m. Obviously,

LR T n =n 3.1

Let us denote by

m, +n,+ .., +n +1=...=2=X +n,+4 .., +n'
m~-1 n v m

The eigenvalues of A.

Since A is symmetric it has a complete set of orthonormal eigenvectors

u u
u u e n, +t, ... n,+ n,’
l’ 2’ ] 1 b ’ 1 2
u u *
vavs n! + n2 + ...+ nm_1 * 1y aony nl + ...+ nm
where

n.

u u
n, + , + ... Ly +1, ... n, M, 4 ...+

are the n; eigenvectors corresponding to the n; equal eigenvalues of

the ith group,

n,
i
e e e et e e e
/ln +n, + +n + 1 n, +n, + +n + ;N\\
1 2 ner i-1 e 1 2 vt i-1 i*
Let,
C=A+¢B (3.2)

where B is a symmetric n X n matrix and € is a perturbation parameter.
We want to know the first-order effect on the pth eigenvalue and

eigenvector, p = 1, 2,..., n.

Let us suppose that lp is equal to the eigenvalues of the kth group,
k=1, 2,..., m i.e, of multiplicity n.

Then the eigenvectors corresponding to Ap are u,, i=

0-+ “se " .
nl + n2 + . nk_] + 1, » 1y + n, + nk-l + “k

We want to find up' and Ap' such that

Cu ' = A ' (3.3)

L]
u
P P P
to a first order approximation at least.

Since every linear combination of the ui's, i= n, +n,

* coie ¥ n_, o+ B ety LR PR .Y is an eigenvector

of A with the same eigenvalue Xp, it is not unreasonable to set

n1 + ...+ nk-l + nk

up' =Z upi u; * evP (3.4)

1= nl + ... F nk—l + 1
We also set
Ap' - lp + e, (3.5)

We now seek to determine vp, up and the api's,

i= LYURARRTRE S W | PR o4 et v

Since the set ug, i=1, 2,..., n, is complete we can expand vp as

A =ZIb . u, (3.6)

If we expand A and B in terms of the Ei. = u.u.T dyads we get

3 1]
n n n
T T, T T _ T (3.7
A= 'Z'i?i Auj) uiuj I )uj(ui “j)“iuj iElliuiui
Bl i,j=1
n
T T
= . L, 3.8
B=2Z1 (u1 AuJ)uluJ { )
i,)=1

Substituting (3.4) and (3.5) into (3.3) and using (3.2) we get

“1*"‘*‘%-1*“k\ T
) =Op *ey)

(A + gB) b2 @y ugtev I ap; Uy * eV,
i=n +...40 +_l i=mn +...+ meqy 1l
* (3.9)
nI + ... * nk n] + ..t o + nk
or Z api Aui + eAvp + € z api Bui + ezsvp =
i= n, o+ ... + L + 1 i= LYIRARTTIE O R i
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ny ot Doy * oy n, LT 4 et o

IA G u, +EX 2
» %pi u, +€ pvP + € z upi up u +E upvp (3.10)
n, + i

i= e + + 1 =
1 < tmy L=m + ...+ oot 1

But, Aui = Ap“%’ i= LIRS LV s e o+ *

Moy vy . (3.11)

Therefore, in (3.10), the first term of the left is equal to the first
term on the right. Hence,
LU 4
" “k-; Ty
sAvp +€ Ia. Bui + € va - elpv + €

% )
1=nl+...+nk_l+l

o .00t nk-l + n
I a. .+ g2

U Tpr Ml T ELY, (3 )
L=a, + ...+ nogt 1

Collecting from (3.12) the terms in the first order in € we get

¥ e
“: M STIR Bp e Oty
Av._+ L o . Bu. = Xv + P :
P pi Ui PP ? %pitp¥i (3.13)
L=y 4oty 41

If we now use the expansions for vp, A and B from (3.6), (3.7) and
(3.8) respectively we have,

g l.u.u.T ; b . u, + glu+..‘- v et T
i-]l il j-]pJ j - pi ’ multiplied by
1 oo nk-l + 1
; (u T Bu.) u u.T u, = X g b + gl e -1 * "
m,j-? e " ' ) i=1 pi ui i api upui
e AL R (3.14)

Using the orthogonality relation uiTuj = 4§,. we get from (3.14),

ij

" Byt Tty L
b i bpiui + Zpi z (um Bui) uo=
i= ] i = ] -
L L m =}
n L J
~ % Pty

A TR
: z bpl u; + I api “p“i

i=1 . (3.15)

Recognizing that

Oyt et n . noon, 4 "‘T+ Pe-1 Py
n api L (um Bui)um =L I apj(ui Buj) uy (3.16)
i=n, + .ot +) m= =l J=m 4 oo b+ 1

we have from (3.15)

n non ke ...T+ L + o ny L R & N + o
z libpiui +I I Gpj(ui Buj) u; = lprpi u, + Zapi upul 3.17)
i=1 =l j=n, + ... 4 4] i=ag 4 o+ ]

Since the ui's, i=1, 2, .., n, are linearly independent the coefficient

of each vector in (3.17) must separately vanish,

Hence, nl + ... ; nk_] + nk
Aibpi + I s (v, Buj) = lp bpi (3.18)
jen, 4 ...+ oy + 1

forie {1, 2, ...y LR . T nl+n2+...+nk_|¥nk*l,...,n}
N+ o

T
.{u.” Bu.) = .
and £ ap](u1 UJ) Gpl Up (3.19)

J-nl F oee. + n_ + 1

for i € {nl*.“ ta L, Bt *ﬁrl+tih
Equation (3.19) is now written, in a matrix form, as follows:

Q% = %php (3.20)
B . % 5 T
where Qp is an nk X oy matrix, whose (i,j) element is ui Buj.
for all i,j e {n1 AAECEILE WP PRI LTI A WP nk] and
ap the o X 1 vector
o = (o o T
P Prny + ... + nooy 1 waay B>1, ot ot nk) (3.21)

Note that Qp is symmetric due to the symmetry of B, We can easily
recognize (3.20) as the eigenvector equation for the matrix QP.
Therefore up is an eigenvalue and ap the corresponding eigenvector of
Q. Note that Qp is symmetric and hence has a complete set of

eigenvectors.
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From (3.18) we can now evaluate the coefficents b i

We find,

Bt Pty

T
. . Bu, &

z %J (l.l1 uJ) (3.22)

junl + ... + LY +
b .=
Pt A=A,

P 1
for all i € {1, 2, ..., Dyt et m L, B4 o4 40+ 1.0}

We observe that the coefficients of u A
+ ... + + ]
1 k-1
u

nl + 0. + LW + n in the expansion of vp (3.6) are indeterminate,

This is to be expected however. Obviously ¢ bpi u; perturbs the
magnitute of api u, 1-n1 + ... + nk-l # ywnay n] + eea. + nk—l + De»
without changing its direction. Since we can change the length of a
vector without disturbing the fact that it is an eigenvector of A, we
should not expect these coefficients to be determined. The choice of
v [

the bpi 8, 1 n1 + ..+ nk-l % gwizay n; g o nk_] + L affects the
second order terms, but may be chosen arbitrarily as far as the first

order terms are concerned.

We now summarize the previous analysis for an eigenvalue A of
multiplicity m :

(i) find the m eigenvectors with eigenvalue A,

Let us denote, for simplicity, these eigenvectors
U Uy, e, um

(ii) form the matrix Q@ = (uiT Buj), i, j=1,2,..., m, and find its

eigenvalues Hys Moy wees Mo and associated normalized eigenvectors

T
Gps G5 ..., & where o = (oy egserss G )7y k=1, 2,.,, m (3.23)
(iii) set,
1 =
Ak A+ €4y
Y . ZakJ(ul uj)
=]
- Eak u+edbu +e I J--*---—- (3.25)

i=] im] i=m+1 1

K=1, 2,..., m. The coefficients bi’ i=1, 2,..., m, are arbitrary.

Remarks

(i) If the eigenvalues of Q are all distinct, then the perturbation has
split the degeneracy for the particular eigenvalue. Indeed, if % #:up
for k,p € {1, 2,.., m}, k ¥ p, then kk' + Ap’

(1ii) Since the coefficients bi’ i=1, 2,..., m, are indeterminate we can

choose them to be zero. Equation (3.25) is then written as
''= E u; + € I qu :u j) ., (3.26)
' By L M
i=1 i=m + 1 i

k=1, 2,00., m.
(iii) If we set

D = ¢B (3.27)
then (3.2) is written as

C=A+0D } (3.28)

T

Since Uy is an eigenvalue of Q = (u Bu ) with assocxated exgenvector

s My is an eigenvalue of €Q = e(u. Bu ) = (u EBu ) = (u

with the same associated eigenmvector. i. e. for the petturbatlon problem
(3.28), .

a) form the matrix Q = (ui D“j)

b) find its eigenvalues Hy and associated eigenvectors

% k=1, 2,.., m, vhere

(3.29)
- (akl’ Bepseres akm)
c) set ;
' (3.30
A=Ay’
< T
Zakj (u; DuJ)
a m oot . (3.31)
' T Boggug * SRR .
iw} j=m+1

k=1, 2,..., m.

(iv) If A_ is a simple eigenvalue with associated eigenvector up then

Q is the 1 X | matrix upT QuP i.e. a scalar. Setting
o’ (3.32)
Wp Ty Qo
equations (3.24) and (3.25) are now written as
f'=a) +¢ (3.33)
AP P uP
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B T
Sl Bu) o, (3.34)
o
P 1

u'=agu +ebu +€Z
P PP PP 1

i=1

i#p

We can easily recognize (3.33) and (3.34) as the well known relations
for the first order perturbation of the eigenvalues and eigenvectors in

the case of distinct eigenvalues.

Conclusion

We have presented a simple, but rigorous, method which permits us to
determine, to a first order approximation, the eigenvalues and eigen-
vectors of the matrix

C=A+¢€B (4.1)
from those of the matrix A, where the matrices A and B are both
symmetric. In the case of an eigenvalué of multiplicity m, the
eigenvalue problem of an m X m matrix has to be solved. We therefore

expect the method to be more efficient for m<<n.
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