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Chains of parametrically driven, damped pendula are known to support soliton-like
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clusters of in-phase motion. Tor sufficiently large driving amplitudes the solitonic
clusters become unstable and seed spatio-temporal chaotic states. We show thal Uhe
pinning of the soliton on an attractive impurity (a pendulum which is longer than
other pendula in the chain) expands dramatically its stability region and prevents
the spatio-temporal chaos from emerging. We also show thal impurities may serve

ag centres of spontancous nucleation of solitons. Finally, stationary solitons pinned Organisers:  Ben Herbst

on lmpurities may develop spontancous oscillations which subsequently synclivonise. Dept Applied Mathematics
{The below ligure shows synchronised oscillations of solitons pinned on o inipurities University of Stellenbosch
placed symmetrically on a ring.) Stellenbosch 7602

emall: herbst@ibis.sun.ac.za
mail: igor@mpipks-dresden.mpg.de; igor@physics.uch.ur
Karin Goosen
Dept Mathematics
University of Stellenbosch
Stellenbosch 7602

email: kik@adept.co.za

Eroail: nora@mpipks-dresden.rupg.de; nora@pliysics.uch. gr

Email: gts@physics,uch.gr

" so0
O

Q.5
-0

36



Growth and decay in random recurrence relations

[.. N. Trefethen
Professor of Numerical Analysis
Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

What happens to the behavior of the Fibounacci recurrence if you
randomize the signs at each step? The answer is that with proba-
bility 1, the sequence grows exponentially at the rate 1.13198824. ...
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APPROXIMATION OF BROWNIAN PATHS AND SDE
SOLUTIONS:
The good, the bad and the ugly

Dr . Rapoo
UNISA!

We will to consider simple stochastic differential equations (SDEs) of the

form
n
- . ’
o= LB,
=1
where B == (By,...,8,) 5 an n-dimensional Brownian motion, Numerical

analysis of this kind of a system is surprisingly tricky if pathwise solutions are
requested. The problems are caused by the special features of stochastic caleu-
fus, such as for instance the existence of infinitely many stochastic integrals, the
unbounded variation of almost all Brownian paths, the “stability” problem be-
tween ODEs and SDEs and the martingale construction of stochastic integrals
which means that path-dependent (eg. variable stepsize) methods must be used

with extreme care. All these problems also appear in the related problem of

trying to approximate the Brownian motion with a bounded-variation function
and thus replace the SDE by an ODE.

We will utilize certain new insights into the nature of SDEs to express general
guidelines about what is good and what is bad in numerical stochastic analysis
and Brownian approximations, and will also suggest sorme new (ugly but useful?)
tactics.
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Eigenvalues, pseudospectra, and dynamics

L. N. Trefethen
al Analysis

Professor of Numeric
Oxford University Computing Laboratory
Woltson Building, Parks Road, Oxford OX1 3QD, UK

A new tool has hecome popular in the 1990s for the analysis of
problems involving non-hermitian matrices and operators: pseu-
dospectra, the regions in the complex plane bounded by levels
curves of the norm of the resolvent. A survey is given of pseu-
dospectra, their nuwerical computation, and their dynamical sig-
nificance in fluid mechanics and other Gelds.



Spurious behavior of difference schemes of

various orders for the Korteweg-de Vries
equabion

3. W. Schoombiefand I Maré
Department of Mathematics and Applied Mathematics
University of the Orange Free State
PO Box 339, Bloemfontein 9300
South Africa

Extended Abstract

In this talk we describe some interesting results which followed out of a
discrete multiple scales avalysis of the Korteweg-de Vries (KdV) equation.

Details of the analysis itself were published be['orc[], 2, 3],

For the purpose of this talk we consider the KdV equation in the form
g F Tty + QU A+ Ve == 0, (n

where the subscripts denote partial differentiation as usual and 1.¢ and +v are
constants, with v # 0. Furthermore we assume that suitable initial data

u(z, 0) = ef(2), flz) = O(1), (2)

be prescribed, where € is a small, real, positive number. We also enforce the
following periodicity conditions

wzE L) =ulzt), et L) = fz),t >0 0e R (3)

We perform our discrete multiple scales analysis ou the following sewi diserete
version of (1):

By + D s+ (/3D P lg)? 4o DV ) D3y (0

*Corresponding author

Affine-Approximate Finite Element Methods

B Daya ReDDY

Faculty of Science
University of Cape Town
7701 Rondebosch
Fax: (021) 650-2710
bdr@psipsy.uct.ac.za

We present an analysis to show that, for quadrilateral elements in two di-
mensions and hexahedral elements in three, it is possible to construct stable,
convergent and accurate finite element approximations based on affine fignres
{(parallelograms or parallelipipeds) that are ‘close’ to the original figures, in
a sense made precise. The method has numerous computational advantages.
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Finite Blement Method of the One-dimensional Problems arising in
Non-Newtonian Flows

JK DiarezuA B D REppy!
Centre for Rescarch in Computational and Applied Mechanies
University of Cape Town
7701 Rondebosch, South Africa

ABSTRACT

One-dimensional problems araising from unidirectional and radial flows. are studied. The hyperbolic
nature of the problem necessitates a modification of the standard Galerkin based finite element method;
here the discontinuous Galerkin method is used for radial flows. The Galerkin method, the streamline
upwind petrov-Galerkin (SUPG) method and the Streamline Upwind are analvsed for the unidirectional

flow, relative accuracy of these methods is discussed.
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where D77 indicates a central difference approximation for the m-th deriva-
tive with respect to 2, with stencil width of 2p+ 1 grid points. These central
differences were calculated using an algorithm of Fornberg[-].

When performing a a multiple scales analysis on (1), removal of secular
terms lead to a form of the cubic Schrédinger equation. Effectively this equa-
tion describes the nonlinear behaviour of the amplitude of a slowly modulated
monochromatic wave, i.e. one approximately of the form

s3]
Nud

n{z, ) = V(X T, To)e? - complex conjugate (£

where

§ = khj — QT), (6)

with £ the wave number of the carrier wave, 0 the carrier frequency, and
where
- N . - 2
Ny =ehg, Ty =6, Ty = et Ty = et*

are the various scales in space and time.

When performing a discrete version of this analysis {described in [2, 3]),
a discrete version of the cubic Schrddinger equation is obtained, but only for
those carrier wave numbers for which a certain function g(h, &,7,)) of grid
length, wave number, and the parameters n and 7 is not zero.

We investigated cases where ¢ = 0, and found by means of numerical
experiments that it leads to spurious behaviour, in the sense that a significant
spurious wave mode is created, and that there are spurious modifications to
the amplitudes of the real solution.

What was interesting was that, as higher order difference methods were
used, these spurious effects tended to become smaller, especially in the case
of lower wave numbers.

It seems that for sufficiently high order methods, this particular type of
spurious behaviour would hecome insignificant.
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The automated detection of gravitational lensing effects.

Ruby van Rooyen
Department of Applied Mathematics
University of Stellenbosch
Matieland 7602

[n the search for extra solar planets using the Gravitational Mi-
crolensing technique, a more efficient way of data analysis is
needed. A number of different techniques are available - all of
them far from perfect. One of the main goals is to improve on
these existing techniques considering the difficulties that arise

with the dimness of lensing objects, atmospheric conditions, op-
tical and instrumental aberrations, upper and lower detection lim-
its and interference such as cosmic rays. Most of these difficulties
are variable and can be predicted with some difficulty and only
by approximation. Different conditions of observation also give
different orientations and ditferent stellar shapes due to seeing
changes. In this talk we describe the basic problems and discuss
triple correlation in some detail.
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Results: The eigenvalue problem

Natural frequencies.

d=01and a =05 6 ==0.1 and o = 0.25
Characteristic eq | FEM (n = 20) | Characteristic eq | FEM (n = 20)
1 1.85398229 1.85398233 1.80171085 1.80171089
2 4.48885757 44888615 4.68669089 4.68669587
3 7.85450288 7.85456715 7.63492665 7.63498240
o4 10.58303254 10.58331557 10.69658787 10.69688642
5 14137167064 14.13836503 14.07427374 14.07544299
6 16.70575901 16.70847862 17.17565008 17.17879279
7 20.42035227 20.42773454 19.81144131 19.81774005
8 22.87313678 22.87696401 23.03705620 23.05027743
15 45.55309347 45.90162370 14.96825963 4490613713

(Results given to eight decimal places.)

Iu the table above we compare approximations for the natural frequencies
obtained by a so called "exact method” to the FEM. Using 20 elements the
results for the first 15 frequencies are excellent.

The FEM enables us to approximate the modes. For example, let § = (.1
and « = 0.25:

Fourth Mede

+ Numerical

- Exact

0.5 1
Position x

As explained in Part 1, it is only feasible to calculate a lew modes using
the "exact method”. This constraint is not experienced with the FEM.

7 References

(8] G Strang & GJ Fix, dn analysis of the finite element method, Prentice-
hall, New Jersey, 1973
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Libraries of numerical algorithms.

Anne Trefethen

NAG has been developing and supporting numerical software li-
braries for nearly thirty years, In that time there been huge
advances not only in numerical algorithms, but also in hardware
and software environments. In this tallk T will describe some of
vhe changing issues involved in numerical library development
and some future directions as we see them.



Since the basis functions take the derivative into account, excellent results
are obtained using this interpolate to approximate a function.
] . ) . . . Thus we solve the system of linear equations
A Fast Method for Updating Itigenfaces , )
) ) K= M]J.
Neil Muller

Department of Applied Mathematics 5 Results: The equilibrium problem

Iniversity of ) 30 . . - . - —
University of Stellenbosch We nse f(z) = Ssin(5z) for illustration purposes. For example, let 0 = 3
Matieland 7602 and @ = 0.5
Displacement
Abstract I
) e
It is well known that, given a set of images L, n £ [1.M] that s * Numerical
N o i AT L C
using Principal Component Analysis (PCA), we can find a basis with @
dimension << M for this set which is optimal in the sense that the QE) 05 - Exact
error made by representing a image in the training set using this basis S
is as small as possible. These principal components are known as ‘% n=4
the eigenfaces and are the eigenvectors of the covariance matrix ¢ = 5
LM (L= AWL=AY e )
L Zi:-L (I, Ty Ve where 4 = 37 Son=) 1,,. 10 0F '
It has been shown that these eigenfaces provide a good method POSiiiOﬂ «

to represent faces for purposes of recognition, provided that the initial
training set is sufficiently representative. However, in many situations,
this is not frue. If presented with a new face which cannot be ade- ) . ) ) .
quately represented by the eigenfaces, we need to caleulate a new set For as little as two intervals we already obtained excellent approximations.

of eigenfaces which includes information about the new face.
While it is possible to create a new covariance matrix and recal- — 7 T
Number of subintervals | max|u —u max ju’ — (u")'|

culate the eigenvectors, this approach is inefficient if we are dealing 5 XGEER GRGGE
0387 1003

/zi

with large training sets. We present a fast method for calculating a . )

good approximation to the eigenvectors of the new covariance matrix A 0.0030 . O'Oﬁi&i

using only the new face and the already calculated eigenfaces. e 10 L9178 > 107 0.0397
100 5.7216 x 107" 0.04

can rewrite the problem in terms of finding the eigenvectors of an ex-

tremely sparse matrix with a well determined structure. This allows
us to calculate the new eigenvectors extremely efficiently. The value of § used above is excessive and even better results are obtained

for smaller values of §.



This choice of basis tunctions makes provision for the handling of func-
tions with discontinuous derivatives at @y = .

4 The bending matrix

The bending matrix, K, for an undamaged beam is defined by Iy, = b(¢;, ¢;)
for 1 <4, ] < 2n+4 2.

In modifying the bending matrix for an undamaged beam to the bending
matrix for a damaged beam, two aspects must be taken into account:

e one of the Type 2 basis hag changed and
o the bilinear form has an additional term.

By replacing the row and column associated with the Type 2 basis func-
tion at zy in the bending matrix of the undamaged beam by two rows and
columns respectively, provision is made for the additional basis function. The
values in the matrix in these two rows and columns have to be modified.

Only four elements in the bending matrix will change due to the additional
’ / N P -
term, (u“ {at) — uh (a")) (V{at) —{a7)) /6, in the bilinear form.

The boundary conditions v(0) = ¢/(0) = 0 are accommodated by remov-
Ing appropriate rows and columns.

The components of i yield the function values of u" at nodes 2 to n+1,
the value of the derivative of v* at nodes 2 to k — L and & + 1 to n + L, and
the left and right derivatives of u* at node k.

The vector £ in the matrix form of the Galerkin approximation, can be
approximated using numerical integration. Since the mass matrix M, with
My = (dy, ¢i), s required for the elgenvalue problem, we rather use the
interpolate of f to calculate £

We define the interpolate f; as

ntl ntk Q43

-f[ - };: f('LH)(f)i + Z ‘/./("Ul)(‘[}l + ,/‘./(‘Y”)“Dn +h+1 + /./((Y F%/’n—;»k 2 2: f/(illz)ﬁ,"’)[v

f==1 LaEn42 penph43

On the Mathematical Foundation of the Nonstandard Finite
Difference Method

1A Anguelov and J M-S Lubuma
Department of Mathematics

Vasta Una ly

Private Boy X131, Silverton 0127

The finite ditference method is oue of the oldest, simplest and thus very
popular technique for the numerical treatment of differential equations. For
most of the equations in mathematical physics finite difference schemes have
been designed and investigated from both theoretical point of view (con-
vergence) and practical point of view (cousistency, stability). Turthermore,
provided the solution is smooth enough, these schemes produce numerical
solution with very good asympeotic behavionr when the step-size approaches
Zero.

One disadvantage of this standard approach is thar qualitative proper-
ries of the exact solution are not transferred to the mumerical solution. In
practice, the limit is not reached. What we have is the numerical solution
obtained for one or several values of the step-size. Thus, the stated disad-
vantage might be catastrophic.

The nonstandard approach discussed in this talk preserves essential prop-
erties of the exact solution. This is achieved by replacing derivatives by
nonstandard finite difference operators with denominators thal are suitable
function of the stap-size, nonlinear expressions being approximated nonlo-
cally.

Nonstandard finite difference techniques were developed empirically for
solving practical problems in applied sciences and engineering.  Although
they produce results satisfactory to their users, these techniques have not
vet been subjected o rigorous mathematical analysis. Some concepts ate
still nuclear.

Our alm s o give rigorous inathematical meaning and justification of
sotne key concepts involved in the design of nonstandard finite difference
schemes. We also discuss a certain number of "suceesstul” empiric procedures
the mathemarical justification of which is still pending.



Numerical Mathematics Issues in Financial
Engineering

DANA MURRAY

Department of Mathematics and Applied Mathematics
University of the Iree State
Bloemfontein 9300

Financial derivatives, or options, are introduced and the numerical methods
used for options pricing are discussed. When these methods, tvpically based
on a discretization of the state space, are gencralized to higher dimensions,
the curse of dimensionality implies that the computational burden grows
exponentially with the state dimension.

Differential dynamic programming (DDP) is discussed as an example of

a dynamic programming method that is based on a parameterization of the
state space that overcomes the curse of dimensionality. While DDP is not
directly applicable to the stochastic problems of options pricing, DDP may
point the way to parameterizations that are more suitable for higher dimen-
sional finance problems.

Bl v) = blut vy} ((u‘l' V(o) — () (e )) (W(a™y — (7)) = (f,v)
for allv e S ‘

The Galerkin approximation reduces to a system of linear equations of

the form

Kii = [

= (f ¢y) and u = 3 udby.

with Ky = Bl d;), L

3  DBasis functions

Hermite piecewise cubics ([S], p. 56) are successfully used for the Galer-
kin approximation associated with an undamaged beam. The possibility of
adapting the same basis functions for the case where we have damage is

investigated.

The interval [a, b] is divided into subintervals of length h; fort =1, 2, ...n
in such a way that o corresponds to a node say .

} 1 1 1 | ll
T T T T I T

Ty =0a Ty I3 T = @ Ty Tyl =D

With each node we associate two Hermite piecewise cubics which we will
refer to as Type 1 and Type 2 basis functions.

Type 1 plecewise cubics:

Type 2 piecewise cubics:

q
i
¥ A +—
i T Liry

For the problem of a beam with damage we associate two basis functions
of Type 2 with zp = o instead of the single classical Type 2 basis function:



A numerical study of the vibrations of a
damaged beam,
Part [I: Application of the FEM.

I Zietsman (UNISA), NFJ van Rensburg (UP), AJ van der Merwe (UP)

1  Introduction

In Part 1 a mathematical model for the vibrations of a cantilever beam
damaged at a single point is given, We consider the implementation of the
finite element method for the equilibrivin problem as well as the eigenvalue
problem.

The variational formulation for the equilibrium problem is given in Part 1
and the Galerkin approximation to this is formulated in Section 2 of Part 2.

In Section 3 Hermite piecewise cubic basis functions are modified to deal
with the discontinuity in the derivative. The construction of the bending
matrix is discussed in Section 4.

Numerical results obtained using the finite element method for the equi-
librium problem and the eigenvalue problem are given and compared to exact
solutions in Sections 5 and 6 respectively.

2  The Galerkin approximation

In order to define the Galerkin approximation for the variational form, clioose
a finite number of functions from the set of test functions, T(I) = {v &
Clo,1] ‘ vljo.a € CF0, &, vy € CHa, 1], v(0) = v'(0) = 0}, say &), oo,
and set S = span{¢y, @2, ..., b}

The Galerkin approximation for the problem in variational form is for-
mulated as:
find vt € S with

Sharp error estimates for a corrected trapezoidal rule

S.AL de Swavdt JAML de Villiers

Applied Department of Mathematics

Department of Mathemaltic
Mathematics and Astronomy University of Stellenbosch

University of South Africa

Corresponding anthor: 5.3 de Swardt

Trapezoidal rules with endpoint corrections can often be considered as au alternative to Newton-
Cotes rules o nnerical integration. A specific example is the Gregory rule of order two, ie.
the Lacroix rule, which has as its analogue in Newton-Cotes quadrature the well-known Simpson
cule, both rules being exact on cubic polynomials. One of the eriterions which can be used in the
comparison of different quadrature rules is to consider the relative sizes of the crror constants
corresponding to integrands f i the relevant continuity classes. We employ here a quadratic
nodal spline interpolation method to compute sharp error constants for the Lacroix rule, which
are then shown to compare favourably with their Shmpson rule counterparts. In addition, a

ceneralized Gregory rule based on non-equally spaced abscissas is explicitly constructed.
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Soliton-radiation resonance m the
parametrically driven, damped NLS equation

V. 5. Shchesnovich
Department of Mathematics and Applied Mathematics
University of Cape Town
Private Bag 7701 Rondebosch
Republic of South Africa.

The parametrically driven, damped NLS equation reads
i+ e + 20q17q = —ivg + he'™Mq (1)

where ¢ is the complex amplitude (bar denotes complex conjugation), v is the
damping coefficient, h is the driving strength, and (2 is the driving frequency.
Eq. (1) describes, for instance, the nonlinear Faraday resonance in a verti-
cally oscillating water trough, the parametric generation of the spin waves in
the one-dimensional ferro and anti-ferromagnets, and the effect of the phase
sensitive parametric amplifiers on the solitons propagating in optical fibers.
It also appears in the theory of waves in plasma. The NLS equation, i
e., (1) with the r.h.s. oqual to zero, is integrable by the Inverse Scattering
Transform method (IST), its solution consists of two mutually noninteract-
ing parts: solitons and radiation. The driven, damped NLS equation also
has one-soliton solution. Consider a more general solution to (1) which is
comprised of the soliton and radiation via the perturbation theory based on
the IST. Being stable “equilibrium” modes of the integrable NLS equation, in
the first order of the perturbation theory both the soliton and radiation give
rise to corresponding oscillating solutions to (1). The soliton brings one os-
cillation mode with the frequency growing from zero as /i increases, while the
radiation part of the solution brings infinitely many oscillation modes with

12

We define a bilinear form B(...) by

| , _ B
B, m) o= bl 0) + = () — 1 (o)) (ver) — v (@) for all u,v e 7.

0

Variational formulation for the equilibrium problem
For fe L* find uw € T(I) such that B(u,v) = (f,v) for all ve T(I). (2)

The following result deals with the equivalence of the boundary value problem
and the variational formulation.

Theorem 1 If u = {uy,ug) is a solution of (2) and u € T(I)NC", then u
is a solution of the boundary value problem.

Theorem 2 The variational problem (2) has at most one solution.

For computational purposes we formulate the variational problems differ-
ently. The restriction of a function v to an interval [a, 8] is denoted by '{:\[,L,,}.
Define the set of test functions by

T = {veC[l] 1 Wjow) € C210, 0] and vy € Chle, 1]}
Variational formulation for the equilibrium problem
For fe L? findw & T(I) such that Blu,v) = (f,v) for all v e T(I). (3)

Variational formulation for the eigenvalue problem

Find w € T(I) and a complex number A such that

Blu,v) = Mu,v) for all ve T(I). (4)

References
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Let 7= (0, 1), [y = (0,@) and [y = (, 1). Define the following product

spaces:

LP e L) < L),

¢ L) % O, =0,
CL o= L) X O (T, =0, 1,
€ = CR(L) % C(1).

As usual L*(1;) refers to the space of square integrable functions, C*(,) to the
space of functions with continuous derivatives on fJ up to order » and Cg° (1)
to the space of infinitely differentiable functions with compact support in /;.
Ci([;) denotes the space of functions with continucus derivatives on Iup
to order ¢ — 1 and with a piecewise continuous derivative of order 7. At the
points of discontinuity of the i-th derivative, both the left and right derivative
should exist and be finite. The space C’j: is contained in the Sobolev space
H(I).
L? is a Hilbert space with the inner product (., ) given by

ro

1
(1, 0) = / uy + / usvy for all u, v € L%
0 Ja
We define the differential operator L by
Lu:= <u(4>, usYy for all u e O,
We define a bilinear form (.,.) by
133 rL . N
b(w, v) = /3 ujvy —%—/ uywy for all w,v € CF.
. [23

[ntegration by parts yields the following Green formula.
Lemma 1 For any u € C* and v € C2
" "ot [ A
{Luyv) = blu,v) + [uf v — W ully + [ud vy~ ubvd],.
We define a set of test functions 7'(I) as

™) = {v e C‘f, s (0) = v {0) = 0, v (@) = vy(a) }.

Note that v = (uy, us) € T(I) is well-defined as a function on [ as (@) =
wa(ev). Also, that these test functions have continuous derivatives on [, and
[, but that a discontinuity in the derivative may occur at

oy

24

the frequencies bounded from below. With the help of the IST technique
one can lormulate a standard sealar eigenvalue problem for the frequencies
of the oscillasion modes of radiation. Besides a continuous spectrum of radi-
ation modes, which is nothing but the deformed spectrum of the integrable
NLS equation, there are discrete modes also, whose frequencies detach from
the lower boundary of the continuous spectrum and go down with growth
of /iy, while the boundary of the continuous spectrum itself goes up. Due
ro soliton-radiation interaction, there 1s some critical value of i, when the
eigenfrequencies of the system describing the solivon coupled to the lowest
discrete radiation mode come m resonance. This soliton- radiation resonance
vesults in the soliton instability.



ON THE SEGMENTATION OF STATIC HANDWRITTEN
SIGNATURES AND THE ENHANCEMENT OF THE
PERFORMANCE OF AN ON-LINE SIGNATURE
VERIFICATION SYSTEM

Hanno Coetzer
Department of Mathematics and Applied Mathematics
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and

Ben Herbst
Department of Applied Mathematics
University of Stellenbosch
Matieland 7602
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email: herbst@ibis.sun.ac.za

Abstract: We continue to investigate the feasibility of using the Radon
Transform and a dynamic programming algorithm to authenticate haundwrit-

ten signatures on cheques. Our current system achieves an equal error rate of

approximately 23% when only very high quality forgeries (skilled forgeries)

are considered and an equal error rate of approximately 10% in the case of

only casual forgeries.

We now address two of the major deficiencies of our current system. All
the projections in the Radon Transform are considered to be of equal im-
portance and only the Karhunen-Loeve Transform is used to eusure rotation
invariance. Both of these deficiencies are addressed by first finding suit-
able mappings between the projections of a test and training signature, be-
fore comparing them. Projections that have similar statistical properties are
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Let A= ' For an undamaged beam the natural frequencies are given hy
p? where i is calculated from the equation

cos prcosh = —1.
The associated mode of vibration is of the form
wi(e) = Asin(ya) ~ Asinh(pe) + Beos{pn) — B eosh{jyn)

where the ratio between 4 and B is determined by the boundary conditions
at x = L, For the damaged beam the form of the mode is given by

Asin(pz) — Asinh(pz) + Beos(pz) — Beosh(pz) for0 <z <o
wiz) = (C+ A)sin(pz) + (D — A) sinh(p)
+(F + B) cos(uz) + (I = B) cosh(px) for o <z < 1,

where the boundary conditions at z = 0 have already been taken into ac-
count.

From the continuity conditions and the jump condition at x = «, the con-
stants €, [, E. and F can be expressed in terms of A and B. Finally, from
the two boundary conditions at = = 1, the characteristic equation for the
natural frequencies can be constructed. Solving this equation numerically
vields the natural frequencies for the damaged beam and for each natural
frequency a vibration mode can then be obtained. As is expected, this ap-
proach vielded onlv the first few natural frequencies and vibration modes as
the cosh and sinh functions are difficult to handle numerically.

In order to find higher natural frequencies and associated modes a finite
element method was used. The natural frequencies and modes calculated
from the characteristic equation, were used to establish the accuracy of the
finite element calculations.

4 Variational formulation of problems

In order to find variational formulations for the problems in Section 2, the
functions u{.) and u(.,t) will be presented as pairs u(.) = (u{.), u5(.)) and
ul, 1) = (u(,,t),ua(., 1)) with u; the restriction of u to the interval [0, ]
and wuy the restriction to {o,1]. In terms of this notation w/(a™) = ()
and v/(at) = ub(a). For the equilibrium problem the conditions at z = «
become:

u{e) = uafor),
o) = u (),
1
ufla) = uple) = =(up(e) — uile)).

3§
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interval [ = [0, 1] and the weak point is located at a fixed point & = . The
displacement of point x at time ¢ is u(z, ¢).
A mathematical model for this problem is given by:

Ru = —du, O<w<l, a#a t>0, (1
uw(0,8) = Gu(0,t) = 0,

or u(l £y = dul(lt)

(o™, t) = wla,t),

" ( o= JwulaT, i), i=2,3,

Pufa,t) = j;;((':)zu((,x"', 6 = duula, £),
)
)

il
=

u(z,0) = alx),
Jyulz,0) = bx).

The problem is formulated in nondimensional form with 6 a positive con-
stant. Right and left limits and right and left derivatives are denoted by the
superscripts + and —.

The conditions at = o model the damage to the beam. Note that the
magnitude of § indicates the extent of damage at a fixed point z = « and
that § = 0 corresponds to a uniform beam with no damage.

We also formulate an equilibrium problem for the beam. In this case a
distributed load f is introduced. and the transverse displacement of point «
in [0, 1] is u(z).

3 Natural frequencies and modes of vibration
One way to calculate the natural frequencies and modes of vibration of the

damaged beam is to apply the method of separation of variables to (1) and
to solve the following resulting eigenvalue problem:

WA = 0, Ozl x# o
w(0) = w'(0) = W' (1) = wWw"(l) = 0,
we™) = wl)
W'ty = wam),
w(at) = w'(a7)
w'(e) = %(U)/(u’*) —w'{a”))

mapped and assigned a suitabilicy value based on these properties. Mapped
pmjv('tions are compared and those with high suitability vales are preferred.

Phese ideas also form the framework for a segmentation algorithm that
successfully separates cursive handwritten signatures at their perceptually
important points.



Numerical Inversion of the Laplace Transform

Andre
Department of Applied Mathematics
University of Stellenbosch
Matieland 7602

The problem of inverting the Laplace Transform numerically has
generated enormous interest over the last two or three decades,
and dozens of methods have been proposed. These methods can
be divided into two classes: The first class of methods is aimed
at the situation where only real values of the transform are avail-
able. The second class of methods, which this talk will focus on,
consists of those methods that assume the transform to be known
as an analytic function that can be evaluated at arbitrary points
in the complex plane. In this case the problem reduces to the nu-
merical computation of the complex inversion formula known as
the Bromwich integral. In the latter class there are three methods
that have surfaced to the top in numerous empirical studies: the
direct evaluation of the Bromwich integral plus sequence accelera-
tion, Talbot’s method, and Weeks’s method. The first two meth-
ods are both based on the trapezoidal rule, the last on Laguerre
expansions. In this talk we shall survey these three methods, and
discuss recent advances in the selection of the free parameters
that control the accuracy of these methods.
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A numerical study of the vibrations of a
damaged beam.
Part [ Theory

[, Zietsman, NFJ van Rensburg, AJ van der Merwe

1 Introduction

The detection of damaged regions in composite materials is attracting much
interest. See [VvR] for details and numerous other references. Different
models are used to describe damage in a beam or plate. We will consider
the model proposed in [VvR]. The damage to the beam is modelled as an
elastic joint. The model is given in Section 2. The natural frequencies for
the damaged beam are calculated from the characteristic equation obtained
from the associated eigenvalue problem. Details are given in Section 3. As
is well-known this approach yields ouly the first few natural frequencies and
modes.

In this study we develop a finite element method for calculating the nat-
ural frequencies and modes. The main problems are to find a class of test
functions which can deal with the discontinnity in the derivative that appears
as a result of the elastic joint and subsequently to construct suitable basis
functions for the finite element computation.

In Section 4 we indicate that our choice of test funcions yields a well-
defined variational problem.

The construction of suitable basis functions for the finite element method
and a discussion of numerical results will follow in the second part of this
presentation.

2  Mathematical Model

We consider small one dimensional transverse vibrations of a uniform can-
tilever beam damaged at a single point. The reference configuration is the
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The hopping hoop
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Abstract

We analyse the rolling motion of a light, rigid hoop with a
massive particle fixed to the rim. The resulting motion is sur-
prisingly complex; inter alia, we show that this is a ”faster than
gravity” model, and that the hoop will hop under the correct
conditions. We also show that in the case of a massless hoop,
the occurence of zero normal reaction does not imply hopping,
thereby contradicting previously published opinions in this re-

spect.
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The Babylonian Method and Higher Order Approximations to
Square Roots.

Carl Rohwer
Departiment of Mathematics
University of Stellenbosch
Matieland 7602

Interest in methods of caleulating the sqare root of a number has resur-
faced at various times and places. Bertrand Russel refered to an interest-
ing method of the old Greeks, and Lothar Collatz veferred to a Babylonian
method, which is effectively a Newton iteration. Using these scant refer-
ences and only basic mathematics, interesting derivations for these, and other
meshods. can be derived. The proceess is instructive and interesting. Some

optimal properties are argued divectly.



Proposal: Wavelets analysis of Missile data,
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1 Introduction

Our aim in this report is to introduce wavelet analysis tools to analise, oval-
uate and characterize missiles nging data obtained from radar and other
Sensors.

To illustrate the various advantages of wavelets, we experimented with
simutated data. We have made certain assumptions to simulate the path
of a typical medium sized missile, launched from the ground. The path is
graphically described by a graph of height versus time. We assume that
the missile path is made up of a basic vertical-horisontal trajectory, with

visible deviations. Piecewise continuous height accelerations as a result of

linear "bang-bang” controls means that our basic path will be described
mathematically by a quadratic spline. We account for the deviations, as
follows:

e By adding vibrations of fixed frequency at random intervals,we describe
the characteristic tracking instrument vibrations and aerodynamic and
missile control natural vibrations.

e To account for statistical measuring errors we add CGuassian noise.

e Due to glint caused by radar reflections, we add impulsive noise.

“Supervisor; CH Rohwer

With our wavelet analysis tools we illustrate the easy identification and
extraction of the frequencies iu the data, removal of noise and economical
storage of data.

In this report we will suppose that the data from the simulated path, y,
is of length 2n+1 and then continue to describe how a wavelet decomposition
is executed on the data. The general step of the decomposition is described
here, complete decomposition is obtained through repeated application of

this step.



